版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數學模擬試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知向量,且,則等于( )A4B3C2D12已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個小三角形全等,則( )APA,PB,PC兩兩垂直B三棱錐P-ABC的體積為CD三棱錐P-ABC的側面積為3函數(其中,
2、)的圖象如圖,則此函數表達式為( )ABCD4若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是( )A1B-3C1或D-3或5若雙曲線的漸近線與圓相切,則雙曲線的離心率為( )A2BCD6博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓某嘉賓突發(fā)奇想,設計兩種乘車方案方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車記方案一與方案二坐到“3號”車的概率分別為P1,P2,則( )AP1P2BP1P2CP1+P2DP1P27設為拋物線的焦點,為拋物線上三點,若,則( ).A9B
3、6CD8已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為( )AB40C16D9已知一個三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,且,則此三棱錐外接球表面積的最小值為( )ABCD10某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側面上,從到的路徑中,最短路徑的長度為( )ABCD211下列命題中,真命題的個數為( )命題“若,則”的否命題;命題“若,則或”;命題“若,則直線與直線平行”的逆命題.A0B1C2D312若P是的充分不必要條件,則p是q的( )A充分不必要條件B
4、必要不充分條件C充要條件D既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13某同學周末通過拋硬幣的方式決定出去看電影還是在家學習,拋一枚硬幣兩次,若兩次都是正面朝上,就在家學習,否則出去看電影,則該同學在家學習的概率為_.14在四棱錐中,是邊長為的正三角形,為矩形,.若四棱錐的頂點均在球的球面上,則球的表面積為_15數學家狄里克雷對數論,數學分析和數學物理有突出貢獻,是解析數論的創(chuàng)始人之一.函數,稱為狄里克雷函數.則關于有以下結論:的值域為;其中正確的結論是_(寫出所有正確的結論的序號)16有以下四個命題:在中,的充要條件是;函數在區(qū)間上存在零點的充要條件是;對于函數,若
5、,則必不是奇函數;函數與的圖象關于直線對稱.其中正確命題的序號為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)某中學為研究學生的身體素質與體育鍛煉時間的關系,對該校名高三學生平均每天體育鍛煉時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”(1)請根據上述表格中的統(tǒng)計數據填寫下面列聯表:并通過計算判斷,是否能在犯錯誤的概率不超過的前提下認為“鍛煉達標”與性別有關?(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出人,進行體育鍛煉體會交流(i)求這人中,男生、女生各有多少人?(ii)從參加體會交流的人中,隨機
6、選出人發(fā)言,記這人中女生的人數為,求的分布列和數學期望參考公式:,其中臨界值表:0.100.050.0250.01002.7063.8415.0246.63518(12分)為響應“堅定文化自信,建設文化強國”,提升全民文化修養(yǎng),引領學生“讀經典用經典”,某廣播電視臺計劃推出一檔“閱讀經典”節(jié)目.工作人員在前期的數據采集中,在某高中學校隨機抽取了120名學生做調查,統(tǒng)計結果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學和不喜歡的比例是5:3.(1)填寫下面列聯表,并根據聯表判斷是否有的把握認為喜歡閱讀中國古典文學與性別有關系?男生女生
7、總計喜歡閱讀中國古典文學不喜歡閱讀中國古典文學總計(2)為做好文化建設引領,實驗組把該校作為試點,和該校的學生進行中國古典文學閱讀交流.實驗人員已經從所調查的120人中篩選出4名男生和3名女生共7人作為代表,這7個代表中有2名男生代表和2名女生代表喜歡中國古典文學.現從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學的人數,求5的分布列及數學期望附表及公式:.19(12分)如圖,空間幾何體中,是邊長為2的等邊三角形,平面平面,且平面平面,為中點.(1)證明:平面;(2)求二面角平面角的余弦值.20(12分)如圖,焦點在軸上的橢圓與焦點在軸上的橢圓都過點,中心
8、都在坐標原點,且橢圓與的離心率均為()求橢圓與橢圓的標準方程;()過點M的互相垂直的兩直線分別與,交于點A,B(點A、B不同于點M),當的面積取最大值時,求兩直線MA,MB斜率的比值.21(12分)已知中,角所對邊的長分別為,且(1)求角的大?。唬?)求的值.22(10分)已知,如圖,曲線由曲線:和曲線:組成,其中點為曲線所在圓錐曲線的焦點,點為曲線所在圓錐曲線的焦點.()若,求曲線的方程;()如圖,作直線平行于曲線的漸近線,交曲線于點,求證:弦的中點必在曲線的另一條漸近線上;()對于()中的曲線,若直線過點交曲線于點,求面積的最大值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。
9、在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】由已知結合向量垂直的坐標表示即可求解【詳解】因為,且,則故選:【點睛】本題主要考查了向量垂直的坐標表示,意在考查學生對這些知識的理解掌握水平,屬于基礎題2C【解析】根據三視圖,可得三棱錐P-ABC的直觀圖,然后再計算可得.【詳解】解:根據三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點,底面ABC.所以三棱錐P-ABC的體積為,、不可能垂直,即不可能兩兩垂直,.三棱錐P-ABC的側面積為.故正確的為C.故選:C.【點睛】本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計算問題,屬于中檔題.3B【解析】由圖象的頂
10、點坐標求出,由周期求出,通過圖象經過點,求出,從而得出函數解析式.【詳解】解:由圖象知,則,圖中的點應對應正弦曲線中的點,所以,解得,故函數表達式為故選:B.【點睛】本題主要考查三角函數圖象及性質,三角函數的解析式等基礎知識;考查考生的化歸與轉化思想,數形結合思想,屬于基礎題.4D【解析】由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2) 點到直線的距離.5C【解析】利用圓心到漸近線的距離等于半徑即可建立間的關系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離
11、等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關鍵是建立三者間的方程或不等關系,本題是一道基礎題.6C【解析】將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1;方案二坐車可能:312、321,所以,P1;所以P1+P2故選C.【點睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數,屬于基礎題.7C【解析】設,由可得,利用定義將用表示即可.【詳解】設,由及,得,故,所以.故選:C.【點睛】本題考查利用拋
12、物線定義求焦半徑的問題,考查學生等價轉化的能力,是一道容易題.8D【解析】如圖所示,過分別作于,于,利用和,聯立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據得到:,即,根據得到:,即,解得,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉化能力.9B【解析】根據三視圖得到幾何體為一三棱錐,并以該三棱錐構造長方體,于是得到三棱錐的外接球即為長方體的外接球,進而得到外接球的半徑,求得外接球的面積后可求出最小值【詳解】由已知條件及三視圖得,此三棱錐的四個頂點位于長方體的四個頂點,即為三棱錐,且長方體的長、寬、高分別為,此三棱錐的外接球即為長方體的外接球,
13、且球半徑為,三棱錐外接球表面積為,當且僅當,時,三棱錐外接球的表面積取得最小值為故選B【點睛】(1)解決關于外接球的問題的關鍵是抓住外接的特點,即球心到多面體的頂點的距離都等于球的半徑,同時要作一圓面起襯托作用(2)長方體的外接球的直徑即為長方體的體對角線,對于一些比較特殊的三棱錐,在研究其外接球的問題時可考慮通過構造長方體,通過長方體的外球球來研究三棱錐的外接球的問題10B【解析】首先根據題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據平面上兩點間直線段最短,利用勾股定理,求得結果.【詳解】根據圓柱的三視圖以及其本身
14、的特征,將圓柱的側面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關特征求得結果.11C【解析】否命題與逆命題是等價命題,寫出的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出的逆否命題后,利用指數函數單調性驗證正確;寫出的逆命題判,利用兩直線平行的條件容易判斷正確.【詳解】的逆命題為“若,則”,
15、令,可知該命題為假命題,故否命題也為假命題;的逆否命題為“若且,則”,該命題為真命題,故為真命題;的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點睛】本題考查判斷命題真假. 判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結構,即它的條件和結論分別是什么,然后聯系其他相關的知識進行判斷(2)當一個命題改寫成“若,則”的形式之后,判斷這個命題真假的方法:若由“”經過邏輯推理,得出“”,則可判定“若,則”是真命題;判定“若,則”是假命題,只需舉一反例即可12B【解析】試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可由p是的充分不必要條件知“若p則”
16、為真,“若則p”為假,根據互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B考點:邏輯命題二、填空題:本題共4小題,每小題5分,共20分。13【解析】采用列舉法計算古典概型的概率.【詳解】拋擲一枚硬幣兩次共有4種情況,即(正,正),(正,反),(反,正),(反,反),在家學習只有1種情況,即(正,正),故該同學在家學習的概率為.故答案為:【點睛】本題考查古典概型的概率計算,考查學生的基本計算能力,是一道基礎題.14【解析】做 中點,的中點,連接,由已知條件可求出,運用余弦定理可求,從而在平面中建立坐標系,則以及的外接圓圓心為和長方形的外接圓圓心為在該平面坐標系的坐標可求,通過球心滿
17、足,即可求出的坐標,從而可求球的半徑,進而能求出球的表面積.【詳解】解:如圖做 中點,的中點,連接 ,由題意知,則 設的外接圓圓心為,則在直線上且 設長方形的外接圓圓心為,則在上且.設外接球的球心為 在 中,由余弦定理可知,.在平面中,以 為坐標原點,以 所在直線為 軸,以過點垂直于 軸的直線為 軸,如圖建立坐標系,由題意知,在平面中且 設 ,則,因為,所以 解得.則 所以球的表面積為.故答案為: .【點睛】本題考查了幾何體外接球的問題,考查了球的表面積.關于幾何體的外接球的做題思路有:一是通過將幾何體補充到長方體中,將幾何體的外接球等同于長方體的外接球,求出體對角線即為直徑,但這種方法適用性
18、較差;二是通過球的球心與各面外接圓圓心的連線與該平面垂直,設半徑列方程求解;三是通過空間、平面坐標系進行求解.15【解析】根據新定義,結合實數的性質即可判斷,由定義求得比小的有理數個數,即可確定.【詳解】對于,由定義可知,當為有理數時;當為無理數時,則值域為,所以錯誤;對于,因為有理數的相反數還是有理數,無理數的相反數還是無理數,所以滿足,所以正確;對于,因為,當為無理數時,可以是有理數,也可以是無理數,所以錯誤;對于,由定義可知,所以錯誤;綜上可知,正確的為.故答案為:.【點睛】本題考查了新定義函數的綜合應用,正確理解題意是解決此類問題的關鍵,屬于中檔題.16【解析】由三角形的正弦定理和邊角
19、關系可判斷;由零點存在定理和二次函數的圖象可判斷;由,結合奇函數的定義,可判斷;由函數圖象對稱的特點可判斷【詳解】解:在中,故正確;函數在區(qū)間上存在零點,比如在存在零點,但是,故錯誤;對于函數,若,滿足,但可能為奇函數,故錯誤; 函數與的圖象,可令,即,即有和的圖象關于直線對稱,即對稱,故錯誤故答案為:【點睛】本題主要考查函數的零點存在定理和對稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)能;(2)(i)男生有人,女生有人;(ii),分布列見解析【解析】(1)根據所給數據可完成列聯表由總人數及女生人數得男生人數,由
20、表格得達標人數,從而得男生中達標人數,這樣不達標人數隨之而得,然后計算可得結論;(2)由達標人數中男女生人數比為可得抽取的人數,總共選2人,女生有4人,的可能值為0,1,2,分別計算概率得分布列,再由期望公式可計算出期望【詳解】(1)列出列聯表,所以在犯錯誤的概率不超過的前提下能判斷“課外體育達標”與性別有關(2)(i)在“鍛煉達標”的學生中,男女生人數比為,用分層抽樣方法抽出人,男生有人,女生有人(ii)從參加體會交流的人中,隨機選出人發(fā)言,人中女生的人數為,則的可能值為,則,可得的分布列為:可得數學期望【點睛】本題考查列聯表與獨立性檢驗,考查分層抽樣,隨機變量的概率分布列和期望主要考查學生
21、的數據處理能力,運算求解能力,屬于中檔題18(1)見解析,沒有(2)見解析,【解析】(1)根據題目所給數據填寫列聯表,計算出的值,由此判斷出沒有的把握認為喜歡閱讀中國古典文學與性別有關系.(2)先判斷出的所有可能取值,然后根據古典概型概率計算公式,計算出分布列并求得數學期望.【詳解】(1)男生女生總計喜歡閱讀中國古典文學423072不喜歡閱讀中國古典文學301848總計7248120所以,沒有的把握認為喜歡閱讀中國古典文學與性別有關系.(2)設參加座談會的男生中喜歡中國古典文學的人數為,女生中喜歡古典文學的人數為,則.且;.所以的分布列為則.【點睛】本小題主要考查列聯表獨立性檢驗,考查隨機變量
22、分布列和數學期望的求法,考查數據處理能力,屬于中檔題.19(1)證明見解析(2)【解析】(1)分別取,的中點,連接,要證明平面,只需證明面面即可.(2)以點為原點,以為軸,以為軸,以為軸,建立空間直角坐標系,分別計算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計算即可.【詳解】(1)證明:分別取,的中點,連接,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以,又平面,平面,所以平面,由,有,又平面,平面,所以平面,由平面,平面,所以平面平面,所以平面(2)以點為原點,以為軸,以為軸,以為軸,建立如圖所示空間直角坐標系由面,所以面的法向量可取,點,點,點,設面的法向量,所以,取,二面角的平面角為,則為銳角.所以【點睛】本題考查由面面平行證明線面平行以及向量法求二面角的余弦值,考查學生的運算能力,在做此類題時,一定要準確寫出點的坐標.20(1),(2)【解析】分析:(1)根據題的條件,得到對應的橢圓的上頂點,即可以求得橢圓中相應的參數,結合橢圓的離心率的大小,求得相應的參數,從而求得橢圓的方程;(2)設出一條直線的方程,與橢圓的方程聯立,消元,利用求根公式求得對應點的坐標,進一步求得向量的坐標,將S表示為關于k的函數關系,從眼角函數的角度去求最值,從而求得結果.詳解:()依題意得對:,得:; 同理:. ()設直線的斜率分別為,則MA:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年大型醫(yī)院建設施工合同范本包工不包料
- 2024年度婚姻財產鑒定合同
- 2024工程項目借款合同
- 2024工地防水材料買賣合同書
- 2024年度基于BIM的建筑物流管理服務合同
- 合同履約的會計分錄-記賬實操
- 2024年商標許可使用權合同
- 全民節(jié)約用水倡議書范文(6篇)
- 2024年度建筑施工質量安全合同
- 2024年城市軌道建設特許經營協(xié)議
- 靜療護士進修匯報
- 2023年唐山銀行招聘考試真題
- 《小學低年級語文說話能力培養(yǎng)的研究》課題實施方案
- 大型機械運輸服務方案
- 2024年公司工會工作計劃模版(三篇)
- 9.1增強安全意識課件-2024-2025學年統(tǒng)編版道德與法治七年級上冊
- 榆能集團筆試考什么
- 應用英語智慧樹知到答案2024年陜西交通職業(yè)技術學院
- 光伏組件回收再利用建設項目可行性研究報告寫作模板-拿地申報
- 一例下肢靜脈血栓疑難病例護理討論1
- 水電站可行性研究階段勘探工作施工組織設計
評論
0/150
提交評論