2022屆浙江省建德市新安江高考臨考沖刺數(shù)學(xué)試卷含解析_第1頁
2022屆浙江省建德市新安江高考臨考沖刺數(shù)學(xué)試卷含解析_第2頁
2022屆浙江省建德市新安江高考臨考沖刺數(shù)學(xué)試卷含解析_第3頁
2022屆浙江省建德市新安江高考臨考沖刺數(shù)學(xué)試卷含解析_第4頁
2022屆浙江省建德市新安江高考臨考沖刺數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù),若,則的值等于( )ABCD2已知三棱錐PABC的頂點都在球O的球面上,PA,PB,AB4,CACB,面

2、PAB面ABC,則球O的表面積為( )ABCD3設(shè)點是橢圓上的一點,是橢圓的兩個焦點,若,則( )ABCD4已知復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點的坐標為,則下列結(jié)論正確的是( )AB復(fù)數(shù)的共軛復(fù)數(shù)是CD5橢圓是日常生活中常見的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個角度,水面的邊界即是橢圓.現(xiàn)有一高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計),在玻璃杯傾斜的過程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是( )ABCD6雙曲線x26-y23=1的漸近線與圓(x3)2y2r2(r0)相切,則r等于()A3B2C3

3、D67已知的垂心為,且是的中點,則( )A14B12C10D88如圖,在平面四邊形ABCD中,若點E為邊CD上的動點,則的最小值為 ( )ABCD91777年,法國科學(xué)家蒲豐在宴請客人時,在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個客人發(fā)許多等質(zhì)量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對針落地的位置進行統(tǒng)計,發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為( )ABCD10已知,函數(shù),若函數(shù)恰有三個零點,則( )ABCD11已知集合,則( )ABCD12已知底面為正

4、方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13記Sk1k+2k+3k+nk,當(dāng)k1,2,3,時,觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,S5An6n5n4+Bn2,可以推測,AB_14已知等差數(shù)列的前n項和為Sn,若,則_.15設(shè)第一象限內(nèi)的點(x,y)滿足約束條件,若目標函數(shù)zaxby(a0,b0)的最大值為40,則的最小值為_.16兩光滑的曲線相切,那么它們在公共點處的切線方向相同如圖所示,一列圓 (an0,rn0,n=1,2)逐個外切,且均與曲線y=x2相切,若r1=1,則a

5、1=_,rn=_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)健身館某項目收費標準為每次60元,現(xiàn)推出會員優(yōu)惠活動:具體收費標準如下:現(xiàn)隨機抽取了100為會員統(tǒng)計它們的消費次數(shù),得到數(shù)據(jù)如下:假設(shè)該項目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:(1)估計1位會員至少消費兩次的概率(2)某會員消費4次,求這4次消費獲得的平均利潤;(3)假設(shè)每個會員每星期最多消費4次,以事件發(fā)生的頻率作為相應(yīng)事件的概率,從會員中隨機抽取兩位,記從這兩位會員的消費獲得的平均利潤之差的絕對值為,求的分布列及數(shù)學(xué)期望18(12分)已知矩陣,若矩陣,求矩陣的逆矩陣19(12分)圖1是由

6、矩形ADEB,RtABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,F(xiàn)BC=60,將其沿AB,BC折起使得BE與BF重合,連結(jié)DG,如圖2.(1)證明:圖2中的A,C,G,D四點共面,且平面ABC平面BCGE;(2)求圖2中的二面角BCGA的大小.20(12分)在平面直角坐標系中,將曲線(為參數(shù))通過伸縮變換,得到曲線,設(shè)直線(為參數(shù))與曲線相交于不同兩點,.(1)若,求線段的中點的坐標;(2)設(shè)點,若,求直線的斜率.21(12分)在平面四邊形(圖)中,與均為直角三角形且有公共斜邊,設(shè),將沿折起,構(gòu)成如圖所示的三棱錐,且使=. (1)求證:平面平面;(2)求二面角的余弦值.

7、22(10分)已知的內(nèi)角,的對邊分別為,且.(1)求;(2)若的面積為,求的周長.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】由函數(shù)的奇偶性可得,【詳解】其中為奇函數(shù),也為奇函數(shù)也為奇函數(shù)故選:B【點睛】函數(shù)奇偶性的運用即得結(jié)果,小記,定義域關(guān)于原點對稱時有:奇函數(shù)奇函數(shù)=奇函數(shù);奇函數(shù)奇函數(shù)=偶函數(shù);奇函數(shù)奇函數(shù)=偶函數(shù);偶函數(shù)偶函數(shù)=偶函數(shù);偶函數(shù)偶函數(shù)=偶函數(shù);奇函數(shù)偶函數(shù)=奇函數(shù);奇函數(shù)偶函數(shù)=奇函數(shù)2D【解析】由題意畫出圖形,找出PAB外接圓的圓心及三棱錐PBCD的外接球心O,通過求解三角形求出三棱錐PBC

8、D的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點為D;PA,PB,AB4,PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rABAD2;設(shè)外接球球心為O;CACB,面PAB面ABC,CDAB可得CD面PAB;且DC.O在CD上;故有:AO2OD2+AD2R2(R)2+r2R;球O的表面積為:4R24.故選:D.【點睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計算能力,屬于中檔題.3B【解析】,故選B點睛:本題主要考查利用橢圓的簡單性質(zhì)及橢圓的定義. 求解與橢圓性質(zhì)有關(guān)的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點、焦

9、點、長軸、短軸等橢圓的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系. 4D【解析】首先求得,然后根據(jù)復(fù)數(shù)乘法運算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復(fù)數(shù),則,所以A選項不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點睛】本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運算等基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想.5C【解析】根據(jù)題意可知當(dāng)玻璃杯傾斜至杯中水剛好不溢出時,水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質(zhì)即可確定此時橢圓的離心率,進而確定離心率的取

10、值范圍.【詳解】當(dāng)玻璃杯傾斜至杯中水剛好不溢出時,水面邊界所形成橢圓的離心率最大.此時橢圓長軸長為,短軸長為6,所以橢圓離心率,所以.故選:C【點睛】本題考查了橢圓的定義及其性質(zhì)的簡單應(yīng)用,屬于基礎(chǔ)題.6A【解析】由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y22x,圓心坐標為(3,0)由題意知,圓心到漸近線的距離等于圓的半徑r,即r223-0222+1=3.答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關(guān)系,屬于基礎(chǔ)題.7A【解析】由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因為為的垂心,所以,所以,而, 所以,因為是的中點,所以故選:A【點睛】本

11、題考查了利用向量的線性運算和向量的數(shù)量積的運算率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.8A【解析】分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設(shè),數(shù)量積轉(zhuǎn)化為關(guān)于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點為O,可知為等腰三角形,而,所以為等邊三角形,。設(shè)=所以當(dāng)時,上式取最小值 ,選A.點睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時利用向量共線轉(zhuǎn)化為函數(shù)求最值。9D【解析】根據(jù)統(tǒng)計數(shù)據(jù),求出頻率,用以估計概率.【詳解】.故選:D.【點睛】本題以數(shù)學(xué)文化為背景,考查利用頻率估計概率,屬于基礎(chǔ)題.

12、10C【解析】當(dāng)時,最多一個零點;當(dāng)時,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得【詳解】當(dāng)時,得;最多一個零點;當(dāng)時,當(dāng),即時,在,上遞增,最多一個零點不合題意;當(dāng),即時,令得,函數(shù)遞增,令得,函數(shù)遞減;函數(shù)最多有2個零點;根據(jù)題意函數(shù)恰有3個零點函數(shù)在上有一個零點,在,上有2個零點,如圖:且,解得,故選【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.11B【解析】計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.【點睛】本題考查了集合的交集,意在考查學(xué)生的計算能力.12C【解析】

13、試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項C是符合要求的.考點:三視圖二、填空題:本題共4小題,每小題5分,共20分。13【解析】觀察知各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),據(jù)此計算得到答案.【詳解】根據(jù)所給的已知等式得到:各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),A,A1,解得B,所以AB故答案為:【點睛】本題考查了歸納推理,意在考查學(xué)生的推理能力.14【解析】由,成等差數(shù)列,代入可得的值.【詳解】解:由等差數(shù)列的性質(zhì)可得:,成等差數(shù)列,可得:,代入,可得:,故答案為:.【點睛】本題主要考查等差數(shù)列前n項和的性質(zhì),相對不難.15【解析】不

14、等式表示的平面區(qū)域陰影部分,當(dāng)直線ax+by=z(a0,b0)過直線xy+2=0與直線2xy6=0的交點(8,10)時,目標函數(shù)z=ax+by(a0,b0)取得最大40,即8a+10b=40,即4a+5b=20,而當(dāng)且僅當(dāng)時取等號,則的最小值為.16 【解析】第一空:將圓與聯(lián)立,利用計算即可;第二空:找到兩外切的圓的圓心與半徑的關(guān)系,再將與聯(lián)立,得到,與結(jié)合可得為等差數(shù)列,進而可得.【詳解】當(dāng)r1=1時,圓,與聯(lián)立消去得,則,解得;由圖可知當(dāng)時,將與聯(lián)立消去得,則,整理得,代入得,整理得,則.故答案為:;.【點睛】本題是拋物線與圓的關(guān)系背景下的數(shù)列題,關(guān)鍵是找到圓心和半徑的關(guān)系,建立遞推式,由

15、遞推式求通項公式,綜合性較強,是一道難度較大的題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)(2)22.5(3)見解析,【解析】(1)根據(jù)頻數(shù)計算頻率,得出概率;(2)根據(jù)優(yōu)惠標準計算平均利潤;(3)求出各種情況對應(yīng)的的值和概率,得出分布列,從而計算出數(shù)學(xué)期望【詳解】解:(1)估計1位會員至少消費兩次的概率;(2)第1次消費利潤;第2次消費利潤;第3次消費利潤;第4次消費利潤;這4次消費獲得的平均利潤:(3)1次消費利潤是27,概率是;2次消費利潤是,概率是;3次消費利潤是,概率是;4次消費利潤是,概率是;由題意:故分布列為: 0 期望為: 【點睛】本題考查概率

16、、平均利潤、離散型隨機變量的分布列和數(shù)學(xué)期望的求法,考查古典概型、相互獨立事件概率乘法公式等基礎(chǔ)知識,考查運算求解能力,屬于中檔題18【解析】試題分析:,所以試題解析:B因為, 所以19 (1)見詳解;(2) .【解析】(1)因為折紙和粘合不改變矩形,和菱形內(nèi)部的夾角,所以,依然成立,又因和粘在一起,所以得證.因為是平面垂線,所以易證.(2)在圖中找到對應(yīng)的平面角,再求此平面角即可.于是考慮關(guān)于的垂線,發(fā)現(xiàn)此垂足與的連線也垂直于.按照此思路即證.【詳解】(1)證:,又因為和粘在一起.,A,C,G,D四點共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得證.(2)過B作延長線于H,連

17、結(jié)AH,因為AB平面BCGE,所以而又,故平面,所以.又因為所以是二面角的平面角,而在中,又因為故,所以.而在中,,即二面角的度數(shù)為.【點睛】很新穎的立體幾何考題首先是多面體粘合問題,考查考生在粘合過程中哪些量是不變的再者粘合后的多面體不是直棱柱,建系的向量解法在本題中略顯麻煩,突出考查幾何方法最后將求二面角轉(zhuǎn)化為求二面角的平面角問題考查考生的空間想象能力20(1);(2).【解析】(1)由l參數(shù)方程與橢圓方程聯(lián)立可得A、B兩點參數(shù)和,再利用M點的參數(shù)為A、B兩點參數(shù)和的一半即可求M的坐標;(2)利用直線參數(shù)方程的幾何意義得到,再利用計算即可,但要注意判別式還要大于0.【詳解】(1)由已知,曲

18、線的參數(shù)方程為(為參數(shù)),其普通方程為,當(dāng)時,將 (為參數(shù))代入得,設(shè)直線l上A、B兩點所對應(yīng)的參數(shù)為,中點M所對應(yīng)的參數(shù)為,則,所以的坐標為;(2)將代入得,則,因為即,所以,故,由得,所以.【點睛】本題考查了伸縮變換、參數(shù)方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識,考查學(xué)生的計算能力,是一道中檔題.21(1)證明見解析;(2)【解析】(1)取AB的中點O,連接,證得,從而證得CO平面ABD,再結(jié)合面面垂直的判定定理,即可證得平面平面;(2)以O(shè)為原點,AB,OC所在的直線為y軸,z軸,建立的空間直角坐標系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)取AB的中點O,連接,在Rt和RtADB中,AB=2,則=DO=1,又CD= ,所以,即OD,又AB,且ABOD=O,平面ABD,所以平面ABD,又CO平面,所以平面平面DAB (2)以O(shè)為原點,AB,OC所在的直線為y軸,z軸,建立如圖所示的空間直角坐標系,則A(0,-1,0),B(0,1,0),C(0,0,1), ,所以,設(shè)平面的法向量為=(),則, 即,代入坐標得,令,得,所以,設(shè)平面的法向量為=(), 則, 即, 代入坐標得, 令,得,所以,所以,所以二面角A-CD-B的余弦值為.【點睛】本題考查了面面垂直的判定與證明,以及空間角的求解問題,意在考查學(xué)生的空間想

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論