2022屆云南省昆明市官渡區(qū)高三3月份模擬考試數(shù)學(xué)試題含解析_第1頁
2022屆云南省昆明市官渡區(qū)高三3月份模擬考試數(shù)學(xué)試題含解析_第2頁
2022屆云南省昆明市官渡區(qū)高三3月份模擬考試數(shù)學(xué)試題含解析_第3頁
2022屆云南省昆明市官渡區(qū)高三3月份模擬考試數(shù)學(xué)試題含解析_第4頁
2022屆云南省昆明市官渡區(qū)高三3月份模擬考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1在中,分別為所對的邊,若函數(shù)有極值點(diǎn),則的范圍是( )ABCD2設(shè)為虛數(shù)單位,復(fù)數(shù),則實(shí)數(shù)的值是( )A1B-1C0D23已知函數(shù)在上單調(diào)遞增,則的取值范圍( )ABCD4函數(shù)f(x)

2、=2x-3+1x-3的定義域?yàn)椋ǎ〢32,3)(3,+) B(-,3)(3,+)C32,+) D(3,+)5給甲、乙、丙、丁四人安排泥工、木工、油漆三項(xiàng)工作,每項(xiàng)工作至少一人,每人做且僅做一項(xiàng)工作,甲不能安排木工工作,則不同的安排方法共有()A12種B18種C24種D64種6偶函數(shù)關(guān)于點(diǎn)對稱,當(dāng)時,求( )ABCD7已知點(diǎn)、若點(diǎn)在函數(shù)的圖象上,則使得的面積為的點(diǎn)的個數(shù)為( )ABCD8設(shè)集合,則( )ABCD9關(guān)于函數(shù)有下述四個結(jié)論:( )是偶函數(shù); 在區(qū)間上是單調(diào)遞增函數(shù);在上的最大值為2; 在區(qū)間上有4個零點(diǎn).其中所有正確結(jié)論的編號是( )ABCD10已知函數(shù),則( )A1B2C3D411

3、如圖所示的程序框圖,當(dāng)其運(yùn)行結(jié)果為31時,則圖中判斷框處應(yīng)填入的是( )ABCD12阿波羅尼斯(約公元前262190年)證明過這樣的命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)的點(diǎn)的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內(nèi)兩定點(diǎn),間的距離為2,動點(diǎn)與,的距離之比為,當(dāng),不共線時,的面積的最大值是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13如果函數(shù)(,且,)在區(qū)間上單調(diào)遞減,那么的最大值為_14已知,滿足不等式組,則的取值范圍為_15圓心在曲線上的圓中,存在與直線相切且面積為的圓,則當(dāng)取最大值時,該圓的標(biāo)準(zhǔn)方程為_.16設(shè)隨機(jī)變量服從正態(tài)分布,若,則的值是_三、解答題:共70分。解

4、答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)為響應(yīng)“堅(jiān)定文化自信,建設(shè)文化強(qiáng)國”,提升全民文化修養(yǎng),引領(lǐng)學(xué)生“讀經(jīng)典用經(jīng)典”,某廣播電視臺計(jì)劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學(xué)校隨機(jī)抽取了120名學(xué)生做調(diào)查,統(tǒng)計(jì)結(jié)果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學(xué)和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學(xué)和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系?男生女生總計(jì)喜歡閱讀中國古典文學(xué)不喜歡閱讀中國古典文學(xué)總計(jì)(2)為做好文化建設(shè)引領(lǐng),實(shí)驗(yàn)組把該校作為試點(diǎn),和該校的學(xué)生進(jìn)行中國古

5、典文學(xué)閱讀交流.實(shí)驗(yàn)人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個代表中有2名男生代表和2名女生代表喜歡中國古典文學(xué).現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學(xué)的人數(shù),求5的分布列及數(shù)學(xué)期望附表及公式:.18(12分)已知六面體如圖所示,平面,是棱上的點(diǎn),且滿足.(1)求證:直線平面;(2)求二面角的正弦值.19(12分)設(shè)函數(shù),()討論的單調(diào)性;()時,若,求證:20(12分)已知動點(diǎn)到定點(diǎn)的距離比到軸的距離多.(1)求動點(diǎn)的軌跡的方程;(2)設(shè),是軌跡在上異于原點(diǎn)的兩個不同點(diǎn),直線和的傾斜角分別為和,當(dāng),變化且時,證

6、明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).21(12分)已知數(shù)列中,a1=1,其前n項(xiàng)和為,且滿足(1)求數(shù)列的通項(xiàng)公式;(2)記,若數(shù)列為遞增數(shù)列,求的取值范圍22(10分)已知數(shù)列和滿足,.()求與;()記數(shù)列的前項(xiàng)和為,且,若對,恒成立,求正整數(shù)的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】試題分析:由已知可得有兩個不等實(shí)根.考點(diǎn):1、余弦定理;2、函數(shù)的極值.【方法點(diǎn)晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價轉(zhuǎn)化能力、運(yùn)算求解能力,綜合性較強(qiáng),

7、屬于較難題型. 首先利用轉(zhuǎn)化化歸思想將原命題轉(zhuǎn)化為有兩個不等實(shí)根,從而可得.2A【解析】根據(jù)復(fù)數(shù)的乘法運(yùn)算化簡,由復(fù)數(shù)的意義即可求得的值.【詳解】復(fù)數(shù),由復(fù)數(shù)乘法運(yùn)算化簡可得,所以由復(fù)數(shù)定義可知,解得,故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的乘法運(yùn)算,復(fù)數(shù)的意義,屬于基礎(chǔ)題.3B【解析】由,可得,結(jié)合在上單調(diào)遞增,易得,即可求出的范圍.【詳解】由,可得,時,而,又在上單調(diào)遞增,且,所以,則,即,故.故選:B.【點(diǎn)睛】本題考查了三角函數(shù)的單調(diào)性的應(yīng)用,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.4A【解析】根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因?yàn)楹瘮?shù)y=2x-3+1x-3,2x-30

8、x-30,解得x32且x3;函數(shù)f(x)=2x-3+1x-3的定義域?yàn)?2,33,+, 故選A【點(diǎn)睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構(gòu)造使解析式有意義的不等式(組)求解;(2) 對實(shí)際問題:由實(shí)際意義及使解析式有意義構(gòu)成的不等式(組)求解;(3) 若已知函數(shù)fx的定義域?yàn)閍,b,則函數(shù)fgx的定義域由不等式agxb求出.5C【解析】根據(jù)題意,分2步進(jìn)行分析:,將4人分成3組,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項(xiàng)工作,由分步計(jì)數(shù)原理計(jì)算可得答案【詳解】解:根據(jù)題意,分2步進(jìn)行分析:,將4人分成3組,有種分法;,甲不能安排木工

9、工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項(xiàng)工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分步計(jì)數(shù)原理的應(yīng)用,屬于基礎(chǔ)題6D【解析】推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計(jì)算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點(diǎn)對稱,則,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時,則.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.7C【解析】設(shè)出點(diǎn)的坐標(biāo),以為底結(jié)合的面積計(jì)算出點(diǎn)到直線的距離,利用點(diǎn)到直線的距離公式可得出關(guān)于的

10、方程,求出方程的解,即可得出結(jié)論.【詳解】設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,即,設(shè)點(diǎn)到直線的距離為,則,解得,另一方面,由點(diǎn)到直線的距離公式得,整理得或,解得或或.綜上,滿足條件的點(diǎn)共有三個故選:C.【點(diǎn)睛】本題考查三角形面積的計(jì)算,涉及點(diǎn)到直線的距離公式的應(yīng)用,考查運(yùn)算求解能力,屬于中等題8D【解析】利用一元二次不等式的解法和集合的交運(yùn)算求解即可.【詳解】由題意知,集合,由集合的交運(yùn)算可得,.故選:D【點(diǎn)睛】本題考查一元二次不等式的解法和集合的交運(yùn)算;考查運(yùn)算求解能力;屬于基礎(chǔ)題.9C【解析】根據(jù)函數(shù)的奇偶性、單調(diào)性、最值和零點(diǎn)對四個結(jié)論逐一分析,由此得出正確結(jié)論的編號.【詳解】的定義域?yàn)?由于,

11、所以為偶函數(shù),故正確.由于,所以在區(qū)間上不是單調(diào)遞增函數(shù),所以錯誤.當(dāng)時,且存在,使.所以當(dāng)時,;由于為偶函數(shù),所以時,所以的最大值為,所以錯誤.依題意,當(dāng)時,所以令,解得,令,解得.所以在區(qū)間,有兩個零點(diǎn).由于為偶函數(shù),所以在區(qū)間有兩個零點(diǎn).故在區(qū)間上有4個零點(diǎn).所以正確.綜上所述,正確的結(jié)論序號為.故選:C【點(diǎn)睛】本小題主要考查三角函數(shù)的奇偶性、單調(diào)性、最值和零點(diǎn),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.10C【解析】結(jié)合分段函數(shù)的解析式,先求出,進(jìn)而可求出.【詳解】由題意可得,則.故選:C.【點(diǎn)睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運(yùn)算求解能力,屬于基礎(chǔ)題.11C【解析】

12、根據(jù)程序框圖的運(yùn)行,循環(huán)算出當(dāng)時,結(jié)束運(yùn)行,總結(jié)分析即可得出答案.【詳解】由題可知,程序框圖的運(yùn)行結(jié)果為31,當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,.此時輸出.故選:C.【點(diǎn)睛】本題考查根據(jù)程序框圖的循環(huán)結(jié)構(gòu),已知輸出結(jié)果求條件框,屬于基礎(chǔ)題.12A【解析】根據(jù)平面內(nèi)兩定點(diǎn),間的距離為2,動點(diǎn)與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結(jié)合求解.【詳解】如圖所示:設(shè),則,化簡得,當(dāng)點(diǎn)到(軸)距離最大時,的面積最大,面積的最大值是.故選:A.【點(diǎn)睛】本題主要考查軌跡的求法和圓的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。1318

13、【解析】根據(jù)函數(shù)單調(diào)性的性質(zhì),分一次函數(shù)和一元二次函數(shù)的對稱性和單調(diào)區(qū)間的關(guān)系建立不等式,利用基本不等式求解即可.【詳解】解:當(dāng)時, ,在區(qū)間上單調(diào)遞減,則,即,則.當(dāng)時, ,函數(shù)開口向上,對稱軸為,因?yàn)樵趨^(qū)間上單調(diào)遞減,則,因?yàn)?則,整理得,又因?yàn)?則.所以即,所以當(dāng)且僅當(dāng)時等號成立.綜上所述,的最大值為18.故答案為:18【點(diǎn)睛】本題主要考查一次函數(shù)與二次函數(shù)的單調(diào)性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.14【解析】畫出不等式組表示的平面區(qū)域如下圖中陰影部分所示,易知在點(diǎn)處取得最小值,即,所以由圖可知的取值范圍為15【解析】由題意可得圓的面積求出圓的半徑,由圓心在曲

14、線上,設(shè)圓的圓心坐標(biāo),到直線的距離等于半徑,再由均值不等式可得的最大值時圓心的坐標(biāo),進(jìn)而求出圓的標(biāo)準(zhǔn)方程【詳解】設(shè)圓的半徑為,由題意可得,所以,由題意設(shè)圓心,由題意可得,由直線與圓相切可得,所以,而,所以,即,解得,所以的最大值為2,當(dāng)且僅當(dāng)時取等號,可得,所以圓心坐標(biāo)為:,半徑為,所以圓的標(biāo)準(zhǔn)方程為:.故答案為:【點(diǎn)睛】本題考查直線與圓的位置關(guān)系及均值不等式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時注意驗(yàn)正等號成立的條件.161【解析】由題得,解不等式得解.【詳解】因?yàn)椋?,所以c=1.故答案為1【點(diǎn)睛】本題主要考查正態(tài)分布的圖像和性質(zhì),意在考查學(xué)生

15、對該知識的理解掌握水平和分析推理能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)見解析,沒有(2)見解析,【解析】(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計(jì)算出的值,由此判斷出沒有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系.(2)先判斷出的所有可能取值,然后根據(jù)古典概型概率計(jì)算公式,計(jì)算出分布列并求得數(shù)學(xué)期望.【詳解】(1)男生女生總計(jì)喜歡閱讀中國古典文學(xué)423072不喜歡閱讀中國古典文學(xué)301848總計(jì)7248120所以,沒有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系.(2)設(shè)參加座談會的男生中喜歡中國古典文學(xué)的人數(shù)為,女生中喜歡古典文學(xué)的人數(shù)為,則.且;.所以的分布

16、列為則.【點(diǎn)睛】本小題主要考查列聯(lián)表獨(dú)立性檢驗(yàn),考查隨機(jī)變量分布列和數(shù)學(xué)期望的求法,考查數(shù)據(jù)處理能力,屬于中檔題.18(1)證明見解析(2)【解析】(1)連接,設(shè),連接.通過證明,證得直線平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的正弦值.【詳解】(1)連接,設(shè),連接,因?yàn)?,所以,所以,在中,因?yàn)?,所以,且平面,故平?(2)因?yàn)椋?,因?yàn)?,平面,所以平面,所以,取所在直線為軸,取所在直線為軸,取所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,由已知可得,所以,因?yàn)椋?,所以點(diǎn)的坐標(biāo)為,所以,設(shè)為平面的法向量,則,令,解得,所以,即為平面的一個法向量.,同理可求得平面

17、的一個法向量為所以所以二面角的正弦值為【點(diǎn)睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19(1)證明見解析;(2)證明見解析.【解析】(1)首先對函數(shù)求導(dǎo),再根據(jù)參數(shù)的取值,討論的正負(fù),即可求出關(guān)于的單調(diào)性即可;(2)首先通過構(gòu)造新函數(shù),討論新函數(shù)的單調(diào)性,根據(jù)新函數(shù)的單調(diào)性證明.【詳解】(1),令,則,令得,當(dāng)時,則在單調(diào)遞減,當(dāng)時,則在單調(diào)遞增,所以,當(dāng)時,即,則在上單調(diào)遞增,當(dāng)時,易知當(dāng)時,當(dāng)時,由零點(diǎn)存在性定理知,不妨設(shè),使得,當(dāng)時,即,當(dāng)時,即,當(dāng)時,即,所以在和上單調(diào)遞增,在單調(diào)遞減;(2)證明:構(gòu)造函數(shù),整理得,(當(dāng)時等號成立)

18、,所以在上單調(diào)遞增,則,所以在上單調(diào)遞增,這里不妨設(shè),欲證,即證由(1)知時,在上單調(diào)遞增,則需證,由已知有,只需證,即證,由在上單調(diào)遞增,且時,有,故成立,從而得證.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)含參分類討論單調(diào)性,借助構(gòu)造函數(shù)和單調(diào)性證明不等式,屬于難題.20(1)或;(2)證明見解析,定點(diǎn)【解析】(1)設(shè),由題意可知,對的正負(fù)分情況討論,從而求得動點(diǎn)的軌跡的方程;(2)設(shè)其方程為,與拋物線方程聯(lián)立,利用韋達(dá)定理得到,所以,所以直線的方程可表示為,即,所以直線恒過定點(diǎn)【詳解】(1)設(shè),動點(diǎn)到定點(diǎn)的距離比到軸的距離多,時,解得,時,解得.動點(diǎn)的軌跡的方程為或(2)證明:如圖,設(shè),由題意得(否則)且,所以直線的斜率存在,設(shè)其方程為,將與聯(lián)立消去,得,由韋達(dá)定理知,顯然,將式代入上式整理化簡可得:,所以,此時,直線的方程可表示為,即,所以直線恒過定點(diǎn).【點(diǎn)睛】本題主要考查了動點(diǎn)軌跡,考查了直線與拋物線的綜合,是中檔題21(1)(2)【解析】(1)項(xiàng)和轉(zhuǎn)換可得,繼而得到,可得解;(2)代入可得,由數(shù)列為遞增數(shù)列可得,令,可證明為遞增數(shù)列,即,即得解【詳解】(1),即,(2)=2-(2n+1)數(shù)列為遞增數(shù)列,即令,即為遞增數(shù)列,即的取值范圍為【點(diǎn)睛】本題考查了數(shù)列綜合問題,考查了項(xiàng)和轉(zhuǎn)換,數(shù)列的單調(diào)性,最值等知識點(diǎn),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論