版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知定義在上的可導(dǎo)函數(shù)滿足,若是奇函數(shù),則不等式的解集是( )ABCD2設(shè)是虛數(shù)單位,則( )ABC1D23若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為( )A7B6C5D44設(shè)為自然對數(shù)的底數(shù),函數(shù),若,則( )ABCD5已知,則( )ABCD26已知,若,則實數(shù)的值是()A-1B7C1D1或77,則與位置關(guān)系是 ()A平行B異面C相交D平行或異面或相交8已知,則的大小關(guān)系為ABCD9已知為等差數(shù)列,若,則( )A1B2C3D610已知直線是曲線的切線,則( )A或1B
3、或2C或D或111已知函數(shù),其中,其圖象關(guān)于直線對稱,對滿足的,有,將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,則函數(shù)的單調(diào)遞減區(qū)間是()ABCD12已知正項等比數(shù)列的前項和為,則的最小值為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13函數(shù)的圖像如圖所示,則該函數(shù)的最小正周期為_.14若關(guān)于的不等式在時恒成立,則實數(shù)的取值范圍是_15若向量與向量垂直,則_.16過直線上一點作圓的兩條切線,切點分別為,則的最小值是_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).點在曲線上,點滿足.(1)以坐標(biāo)原點為
4、極點,軸的正半軸為極軸建立極坐標(biāo)系,求動點的軌跡的極坐標(biāo)方程;(2)點,分別是曲線上第一象限,第二象限上兩點,且滿足,求的值.18(12分)已知不等式對于任意的恒成立.(1)求實數(shù)m的取值范圍;(2)若m的最大值為M,且正實數(shù)a,b,c滿足.求證.19(12分)如圖為某大江的一段支流,岸線與近似滿足,寬度為圓為江中的一個半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,現(xiàn)計劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護(hù)小島,段設(shè)計成與圓相切設(shè) (1)試將通道的長表示成的函數(shù),并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?20(12分
5、)設(shè)函數(shù)()的最小值為.(1)求的值;(2)若,為正實數(shù),且,證明:.21(12分)如圖,在直角中,通過以直線為軸順時針旋轉(zhuǎn)得到().點為斜邊上一點.點為線段上一點,且.(1)證明:平面;(2)當(dāng)直線與平面所成的角取最大值時,求二面角的正弦值.22(10分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設(shè)斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當(dāng)時,求(O為坐標(biāo)原點)面積的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1
6、A【解析】構(gòu)造函數(shù),根據(jù)已知條件判斷出的單調(diào)性.根據(jù)是奇函數(shù),求得的值,由此化簡不等式求得不等式的解集.【詳解】構(gòu)造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當(dāng)時,所以,所以.由得,所以,故不等式的解集為.故選:A【點睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.2C【解析】由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:, ,解得:.故選:C.【點睛】本題考查了復(fù)數(shù)的運算,考查了復(fù)數(shù)相等的涵義.對于復(fù)數(shù)的運算類問題,易錯點是把 當(dāng)成進(jìn)行運算.3C【解析】由二項式系數(shù)性質(zhì),的展開式中所有二項式系數(shù)和為計算
7、【詳解】的二項展開式中二項式系數(shù)和為,故選:C【點睛】本題考查二項式系數(shù)的性質(zhì),掌握二項式系數(shù)性質(zhì)是解題關(guān)鍵4D【解析】利用與的關(guān)系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數(shù)值的計算,屬于基礎(chǔ)題.5B【解析】結(jié)合求得的值,由此化簡所求表達(dá)式,求得表達(dá)式的值.【詳解】由,以及,解得.故選:B【點睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡求值,考查二倍角公式,屬于中檔題.6C【解析】根據(jù)平面向量數(shù)量積的坐標(biāo)運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標(biāo)運算,代入化簡可得.解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標(biāo)運算,屬于基礎(chǔ)題.7D【解析】結(jié)合
8、圖(1),(2),(3)所示的情況,可得a與b的關(guān)系分別是平行、異面或相交選D8D【解析】分析:由題意結(jié)合對數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)性和指數(shù)的性質(zhì)整理計算即可確定a,b,c的大小關(guān)系.詳解:由題意可知:,即,即,即,綜上可得:.本題選擇D選項.點睛:對于指數(shù)冪的大小的比較,我們通常都是運用指數(shù)函數(shù)的單調(diào)性,但很多時候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進(jìn)行比較這就必須掌握一些特殊方法在進(jìn)行指數(shù)冪的大小比較時,若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進(jìn)行判斷對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準(zhǔn)確9B【解析】利用等差數(shù)列的通項
9、公式列出方程組,求出首項和公差,由此能求出【詳解】an為等差數(shù)列,,,解得10,d3,+4d10+111故選:B【點睛】本題考查等差數(shù)列通項公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題10D【解析】求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點坐標(biāo),代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.11B【解析】根據(jù)已知得到函數(shù)兩個對稱軸的距離也即是半周期,由此求得的值,結(jié)合其對稱軸,求得的值,進(jìn)而求得解析式.根據(jù)圖像變換的知識求得的解析式,再利用三角函數(shù)求單調(diào)區(qū)間的方
10、法,求得的單調(diào)遞減區(qū)間.【詳解】解:已知函數(shù),其中,其圖像關(guān)于直線對稱,對滿足的,有,.再根據(jù)其圖像關(guān)于直線對稱,可得,.,.將函數(shù)的圖像向左平移個單位長度得到函數(shù)的圖像.令,求得,則函數(shù)的單調(diào)遞減區(qū)間是,故選B.【點睛】本小題主要考查三角函數(shù)圖像與性質(zhì)求函數(shù)解析式,考查三角函數(shù)圖像變換,考查三角函數(shù)單調(diào)區(qū)間的求法,屬于中檔題.12D【解析】由,可求出等比數(shù)列的通項公式,進(jìn)而可知當(dāng)時,;當(dāng)時,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,得,解得,得.當(dāng)時,;當(dāng)時,則的最小值為.故選:D.【點睛】本題考查等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計算求解
11、能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)圖象利用,先求出的值,結(jié)合求出,然后利用周期公式進(jìn)行求解即可【詳解】解:由,得,則,即,則函數(shù)的最小正周期,故答案為:8【點睛】本題主要考查三角函數(shù)周期的求解,結(jié)合圖象求出函數(shù)的解析式是解決本題的關(guān)鍵14【解析】利用對數(shù)函數(shù)的單調(diào)性,將不等式去掉對數(shù)符號,再依據(jù)分離參數(shù)法,轉(zhuǎn)化成求構(gòu)造函數(shù)最值問題,進(jìn)而求得的取值范圍?!驹斀狻坑?得,兩邊同除以,得到,設(shè),由函數(shù) 在上遞減,所以,故實數(shù)的取值范圍是。【點睛】本題主要考查對數(shù)函數(shù)的單調(diào)性,以及恒成立問題的常規(guī)解法分離參數(shù)法。150【解析】直接根據(jù)向量垂直計算得到答案
12、.【詳解】向量與向量垂直,則,故.故答案為:.【點睛】本題考查了根據(jù)向量垂直求參數(shù),意在考查學(xué)生的計算能力.16【解析】由切線的性質(zhì),可知,切由直角三角形PAO,PBO,即可設(shè),進(jìn)而表示,由圖像觀察可知進(jìn)而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數(shù)求出最小值.【詳解】由題可知,設(shè),由切線的性質(zhì)可知,則顯然,則或(舍去)因為令,則,由雙勾函數(shù)單調(diào)性可知其在區(qū)間上單調(diào)遞增,所以故答案為:【點睛】本題考查在以直線與圓的位置關(guān)系為背景下求向量數(shù)量積的最值問題,應(yīng)用函數(shù)形式表示所求式子,進(jìn)而利用分析函數(shù)單調(diào)性或基本不等式求得最值,屬于較難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過
13、程或演算步驟。17(1)();(2)【解析】(1)由已知,曲線的參數(shù)方程消去t后,要注意x的范圍,再利用普通方程與極坐標(biāo)方程的互化公式運算即可;(2)設(shè),由(1)可得,相加即可得到證明.【詳解】(1),由題可知:,:().(2)因為,設(shè),則,.【點睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,考查學(xué)生的計算能力,是一道容易題.18(1)(2)證明見解析【解析】(1)法一:,得,則,由此可得答案;法二:由題意,令,易知是偶函數(shù),且時為增函數(shù),由此可得出答案;(2)由(1)知,即,結(jié)合“1”的代換,利用基本不等式即可證明結(jié)論【詳解】解:(1)法一:(當(dāng)且僅當(dāng)時取等號),又(當(dāng)且僅當(dāng)時取等號)
14、,所以(當(dāng)且僅當(dāng)時取等號),由題意得,則,解得,故的取值范圍是;法二:因為對于任意恒有成立,即,令,易知是偶函數(shù),且時為增函數(shù),所以,即,則,解得,故的取值范圍是;(2)由(1)知,即,故不等式成立【點睛】本題主要考查絕對值不等式的恒成立問題,考查基本不等式的應(yīng)用,屬于中檔題19(1),定義域是(2)百萬【解析】(1)以為原點,直線為軸建立如圖所示的直角坐標(biāo)系,設(shè),利用直線與圓相切得到,再代入這一關(guān)系中,即可得答案;(2)利用導(dǎo)數(shù)求函數(shù)的最小值,即可得答案;【詳解】以為原點,直線為軸建立如圖所示的直角坐標(biāo)系 設(shè),則,因為,所以直線的方程為,即,因為圓與相切,所以,即,從而得,在直線的方程中,令
15、,得,所以,所以當(dāng)時,設(shè)銳角滿足,則,所以關(guān)于的函數(shù)是,定義域是(2)要使建造此通道費用最少,只要通道的長度即最小令,得,設(shè)銳角,滿足,得列表:0減極小值增所以時,所以建造此通道的最少費用至少為百萬元【點睛】本題考查三角函數(shù)模型的實際應(yīng)用、利用導(dǎo)數(shù)求函數(shù)的最小值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.20(1)(2)證明見解析【解析】(1)分類討論,去絕對值求出函數(shù)的解析式,根據(jù)一次函數(shù)的性質(zhì),得出的單調(diào)性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡后利用基本不等式求出的最小值,即可證出.【詳解】(1)解:當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增
16、.所以當(dāng)時,取最小值.(2)證明:由(1)可知.要證明:,即證,因為,為正實數(shù),所以.當(dāng)且僅當(dāng),即,時取等號,所以.【點睛】本題考查絕對值不等式和基本不等式的應(yīng)用,還運用“乘1法”和分類討論思想,屬于中檔題.21(1)見解析;(2)【解析】(1)先算出的長度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應(yīng)最小,可得為中點,然后建系分別求出平面的法向量即可算得二面角的余弦值,進(jìn)一步得到正弦值.【詳解】(1)在中,由余弦定理得,由題意可知:,平面,平面,又,平面.(2)以為坐標(biāo)原點,以,的方向為,軸的正方向,建立空間直角坐標(biāo)系.平面,在平面上的射影是,與平面所成的角是,最大時,即,點為中點.,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,同理,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,故二面角的正弦值為.【點睛】本題考查線面垂直的判定定理以及利用向量法求二面角的正弦值,考查學(xué)生的運算求解能力,是一道中檔題.22(1);(2).【解析】(1)根據(jù)題意得到GB是線段的中垂線,從而為定值,根據(jù)橢圓定義可知點G的軌跡是以M,N為焦點的橢圓,即可求出曲線C的方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鄭州軌道工程職業(yè)學(xué)院《軟裝面料再造》2023-2024學(xué)年第一學(xué)期期末試卷
- 肇慶醫(yī)學(xué)高等??茖W(xué)校《建筑工程計量與計價》2023-2024學(xué)年第一學(xué)期期末試卷
- 運城幼兒師范高等??茖W(xué)?!秳赢嫾挤ā?023-2024學(xué)年第一學(xué)期期末試卷
- 區(qū)塊鏈確保食品追溯透明
- DB2201T 67-2024 架子牛引進(jìn)質(zhì)量控制規(guī)范
- 數(shù)學(xué)啟蒙游戲課
- 房地產(chǎn)經(jīng)紀(jì)綜合能力-《房地產(chǎn)經(jīng)紀(jì)綜合能力》點睛提分卷2
- 七夕節(jié)的傳統(tǒng)與現(xiàn)代模板
- 農(nóng)學(xué)研究答辯模板
- 二零二五年房地產(chǎn)廣告策劃合同1200字模板2篇
- 課題申報書:大中小學(xué)鑄牢中華民族共同體意識教育一體化研究
- 巖土工程勘察課件0巖土工程勘察
- 《腎上腺腫瘤》課件
- 2024-2030年中國典當(dāng)行業(yè)發(fā)展前景預(yù)測及融資策略分析報告
- 《乘用車越野性能主觀評價方法》
- 幼師個人成長發(fā)展規(guī)劃
- 2024-2025學(xué)年北師大版高二上學(xué)期期末英語試題及解答參考
- 批發(fā)面包采購合同范本
- 乘風(fēng)化麟 蛇我其誰 2025XX集團(tuán)年終總結(jié)暨頒獎盛典
- 2024年大數(shù)據(jù)分析公司與中國政府合作協(xié)議
- 一年級數(shù)學(xué)(上)計算題專項練習(xí)匯編
評論
0/150
提交評論