版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知中,則( )A1BCD2已知是等差數(shù)列的前項和,若,則( )A5B10C15D203已知等差數(shù)列的公差為-2,前項和為,若,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為( )A5B11C20D254命題“”的否定是( )
2、ABCD5我國古代有著輝煌的數(shù)學(xué)研究成果,其中的周髀算經(jīng)、九章算術(shù)、海島算經(jīng)、孫子算經(jīng)、緝古算經(jīng),有豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為( )ABCD6已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內(nèi)切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為( )ABCD7函數(shù)的大致圖象是( )ABCD8高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),
3、用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,已知函數(shù)(),則函數(shù)的值域為( )ABCD9已知函數(shù)(,且)在區(qū)間上的值域為,則( )ABC或D或410在長方體中,則直線與平面所成角的余弦值為( )ABCD11已知數(shù)列的前項和為,且,則( )ABCD12當(dāng)輸入的實數(shù)時,執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知,且,若恒成立,則實數(shù)的取值范圍是_14在平面直角坐標(biāo)系中,雙曲線(,)的左頂點為A,右焦點為F,過F作x軸的垂線交雙曲線于點P,Q.若為直角三角形,則該雙曲線的離心率是_.15己知雙曲線的左、右焦點分別為,
4、直線是雙曲線過第一、三象限的漸近線,記直線的傾斜角為,直線,垂足為,若在雙曲線上,則雙曲線的離心率為_16過圓的圓心且與直線垂直的直線方程為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在中,、的對應(yīng)邊分別為、,已知,.(1)求;(2)設(shè)為中點,求的長.18(12分)在四棱錐中,底面是邊長為2的菱形,是的中點(1)證明:平面;(2)設(shè)是線段上的動點,當(dāng)點到平面距離最大時,求三棱錐的體積19(12分)對于非負整數(shù)集合(非空),若對任意,或者,或者,則稱為一個好集合以下記為的元素個數(shù)(1)給出所有的元素均小于的好集合(給出結(jié)論即可)(2)求出所有滿足的好集合(同時
5、說明理由)(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數(shù)倍20(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)把的參數(shù)方程化為極坐標(biāo)方程:(2)求與交點的極坐標(biāo).21(12分)在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)).以原點為極點,x軸的非負半軸為極軸,建立極坐標(biāo)系.(1)求曲線C的極坐標(biāo)方程;(2)直線(t為參數(shù))與曲線C交于A,B兩點,求最大時,直線l的直角坐標(biāo)方程.22(10分)已知拋物線的焦點為,點,點為拋物線上的動點 (1)若的最小值為,求實數(shù)的值; (2)設(shè)線段的中點為,其中為坐
6、標(biāo)原點,若,求的面積參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】以為基底,將用基底表示,根據(jù)向量數(shù)量積的運算律,即可求解.【詳解】,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數(shù)量積運算,屬于中檔題.2C【解析】利用等差通項,設(shè)出和,然后,直接求解即可【詳解】令,則,.【點睛】本題考查等差數(shù)列的求和問題,屬于基礎(chǔ)題3D【解析】由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,中最大,最小,又,為
7、三角形的三邊長,且最大內(nèi)角為, 由余弦定理得,設(shè)首項為,即得,所以或,又即,舍去,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應(yīng)用,考查求前n項和的最值問題,同時還考查了余弦定理的應(yīng)用.4D【解析】根據(jù)全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,故選D【點睛】本題考查全稱命題的否定,難度容易.5D【解析】利用列舉法,從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結(jié)
8、果.【詳解】周髀算經(jīng)、九章算術(shù)、海島算經(jīng)、孫子算經(jīng)、緝古算經(jīng),這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期記這5部專著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時期從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為故選D【點睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有 (1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:
9、適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,. ,再,.依次. 這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.6D【解析】可設(shè)的內(nèi)切圓的圓心為,設(shè),可得,由切線的性質(zhì):切線長相等推得,解得、,并設(shè),求得的值,推得為等邊三角形,由焦距為三角形的高,結(jié)合離心率公式可得所求值【詳解】可設(shè)的內(nèi)切圓的圓心為,為切點,且為中點,設(shè),則,且有,解得,設(shè),設(shè)圓切于點,則,由,解得,所以為等邊三角形,所以,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質(zhì),注意運用三角形的內(nèi)心性質(zhì)和等邊三角形的性質(zhì),切線的性質(zhì),考查化簡運算能力,屬于中檔題7A【解析】用排除B
10、,C;用排除;可得正確答案.【詳解】解:當(dāng)時,所以,故可排除B,C;當(dāng)時,故可排除D故選:A【點睛】本題考查了函數(shù)圖象,屬基礎(chǔ)題8B【解析】利用換元法化簡解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因為(),所以,令(),則(),函數(shù)的對稱軸方程為,所以,所以,所以的值域為.故選:B【點睛】本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識,考查學(xué)生分析問題,解決問題的能力,運算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類討論和應(yīng)用意識.9C【解析】對a進行分類討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當(dāng)時,所以,所以;當(dāng)時,所以,所以.綜上,或,故選
11、C.【點睛】本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運算和數(shù)學(xué)抽象的核心素養(yǎng).10C【解析】在長方體中, 得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結(jié)論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,直線與平面所成角的余弦值為.故選:C.【點睛】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎(chǔ)題.11C【解析】根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項公式,由此求得.【詳解】由于,所以數(shù)列是等比數(shù)列,其首項為,第二項為,所以公比為.所以,所以.故選:C【點
12、睛】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項公式,屬于基礎(chǔ)題.12A【解析】根據(jù)循環(huán)結(jié)構(gòu)的運行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結(jié)論.【詳解】程序框圖共運行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果、幾何概型的概率,模擬程序運行是解題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13(-4,2)【解析】試題分析:因為當(dāng)且僅當(dāng)時取等號,所以考點:基本不等式求最值142【解析】根據(jù)是等腰直角三角形,且為中點可得,再由雙曲線的性質(zhì)可得,解出即得.【詳解】由題,設(shè)點,由,解得,即線段,
13、為直角三角形,且,又為雙曲線右焦點,過點,且軸,可得,整理得:,即,又,.故答案為:【點睛】本題考查雙曲線的簡單性質(zhì),是??碱}型.15【解析】由,則,所以點, 因為,可得,點坐標(biāo)化簡為,代入雙曲線的方程求解.【詳解】設(shè),則,即,解得,則,所以,即,代入雙曲線的方程可得,所以 所以解得.故答案為:【點睛】本題主要考查了直線與雙曲線的位置關(guān)系,及三角恒等變換,還考查了運算求解的能力和數(shù)形結(jié)合的思想,屬于中檔題.16【解析】根據(jù)與已知直線垂直關(guān)系,設(shè)出所求直線方程,將已知圓圓心坐標(biāo)代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設(shè)為,圓心代入,可得,所以所求的直線方程為.故答案為:.【點睛】本題
14、考查圓的方程、直線方程求法,注意直線垂直關(guān)系的靈活應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1);(2).【解析】(1)直接根據(jù)特殊角的三角函數(shù)值求出,結(jié)合正弦定理求出;(2)結(jié)合第一問的結(jié)論以及余弦定理即可求解【詳解】解:(1),且,由正弦定理,銳角,(2),在中,由余弦定理得【點睛】本題主要考查了正弦定理和余弦定理的運用考查了學(xué)生對三角函數(shù)基礎(chǔ)知識的綜合運用18(1)見解析(2)【解析】(1)連接與交于,連接,證明即可得證線面平行;(2)首先證明平面(只要取中點,可證平面,從而得,同理得),因此點到直線的距離即為點到平面的距離,由平面幾何知識易得
15、最大值,然后可計算體積【詳解】(1)證明:連接與交于,連接,因為是菱形,所以為的中點,又因為為的中點,所以,因為平面平面,所以平面(2)解:取中點,連接,因為四邊形是菱形,且,所以,又,所以平面,又平面,所以同理可證:,又,所以平面,所以平面平面,又平面平面,所以點到直線的距離即為點到平面的距離,過作直線的垂線段,在所有垂線段中長度最大為,因為為的中點,故點到平面的最大距離為1,此時,為的中點,即,所以,所以【點睛】本題考查證明線面平行,考查求棱錐的體積,掌握面面垂直與線面垂直的判定與性質(zhì)是解題關(guān)鍵19(1),(2);證明見解析(3)證明見解析【解析】(1)根據(jù)好集合的定義列舉即可得到結(jié)果;(
16、2)設(shè),其中,由知;由可知或,分別討論兩種情況可的結(jié)果;(3)記,則,設(shè),由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.【詳解】(1),(2)設(shè),其中,則由題意:,故,即,考慮,可知:,或,若,則考慮,則,但此時,不滿足題意;若,此時,滿足題意,其中為相異正整數(shù)(3)記,則,首先,設(shè),其中,分別考慮和其他任一元素,由題意可得:也在中,而,對于,考慮,其和大于,故其差,特別的,由,且,以此類推:,此時,故中存在元素,使得中所有元素均為的整數(shù)倍【點睛】本題考查集合中的新定義問題的求解,關(guān)鍵是明確已知中所給的新定義的具體要求,根據(jù)集合元素的要求進行推理說明,對于學(xué)生分析和解決問題能力、
17、邏輯推理能力有較高的要求,屬于較難題.20(1)(2)與交點的極坐標(biāo)為,和【解析】(1)先把曲線化成直角坐標(biāo)方程,再化簡成極坐標(biāo)方程;(2)聯(lián)立曲線和曲線的方程解得即可.【詳解】(1)曲線的直角坐標(biāo)方程為:,即 . 的參數(shù)方程化為極坐標(biāo)方程為;(2)聯(lián)立可得:,與交點的極坐標(biāo)為,和.【點睛】本題考查了參數(shù)方程,直角坐標(biāo)方程,極坐標(biāo)方程的互化,也考查了極坐標(biāo)方程的聯(lián)立,屬于基礎(chǔ)題.21(1);(2).【解析】(1)利用消去參數(shù),得到曲線的普通方程,再將,代入普通方程,即可求出結(jié)論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點,最大值為圓的直徑,直線過圓心,即可求出直線的方程.【詳解】(1)由曲線C的參數(shù)方程(為參數(shù)),可得曲線C的普通方程為,因為,所以曲線C的極坐標(biāo)方程為,即.(2)因為直線(t為參數(shù))表示的是過點的直線,曲線C的普通方程為,所以當(dāng)最大時,直線l經(jīng)過圓心.直線l的斜率為,方程為,所以直線l的直角坐標(biāo)方程為.【點睛】本題考查參數(shù)方程與普通方程互化、直角坐標(biāo)方程與極坐標(biāo)方程互化、直線與曲線的位置關(guān)系,考查化歸和轉(zhuǎn)化思想,屬于中檔題.22(1)的值為或.(2)【解析】(1)分類討論,當(dāng)時,線段與拋物線沒有公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合同模板中央空調(diào)銷售合同范本
- 北京億歐網(wǎng)盟科技有限公司-新質(zhì)生產(chǎn)力系列:2025中國消費級AI硬件價值洞察及GEEK50榜單報告
- 2024年三年級道德與法治下冊 第四單元 多樣的交通和通信 11四通八達的交通第二課時說課稿 新人教版
- 2024年秋七年級地理上冊 第五章 世界的發(fā)展差異 5.2《國際經(jīng)濟合作》說課稿2 (新版)湘教版
- 9 古代科技 耀我中華(說課稿)2024-2025學(xué)年統(tǒng)編版道德與法治五年級上冊
- 養(yǎng)殖設(shè)備銷售合同范例
- 2024年一年級道德與法治上冊 第16課 我有一雙明亮的眼睛說課稿 未來版
- 9 種豆子 說課稿-2023-2024學(xué)年科學(xué)二年級下冊冀人版
- 出售電廠鍋爐合同范例
- 人員轉(zhuǎn)公司合同范例
- 投標(biāo)廢標(biāo)培訓(xùn)
- 腦卒中課件完整版本
- 藥房保潔流程規(guī)范
- 電子信息工程基礎(chǔ)知識單選題100道及答案解析
- 血液透析器課件
- 吊車司機雇傭合同協(xié)議書
- 新華師大版八年級下冊初中數(shù)學(xué)全冊課時練(課后作業(yè)設(shè)計)
- 致命性大出血急救專家共識
- 住院成人高血糖患者血糖監(jiān)測醫(yī)護協(xié)議處方共識
- JTS-169-2017碼頭附屬設(shè)施技術(shù)規(guī)范
- DL-T5816-2020分布式電化學(xué)儲能系統(tǒng)接入配電網(wǎng)設(shè)計規(guī)范
評論
0/150
提交評論