版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為則( )ABCD2如圖示,三棱錐的底面是等腰直角三角形,且,則與面所成角的正弦值等于( )ABCD3設(shè)雙曲線的左右焦點(diǎn)分別為,點(diǎn).已知?jiǎng)狱c(diǎn)在雙曲線的右支上,且
2、點(diǎn)不共線.若的周長(zhǎng)的最小值為,則雙曲線的離心率的取值范圍是( )ABCD4函數(shù)的圖像大致為( ).ABCD 5集合,則( )ABCD6已知集合Myy2x,x0,Nxylg(2xx2),則MN為( )A(1,)B(1,2)C2,)D1,)7在中,是的中點(diǎn),點(diǎn)在上且滿足,則等于( )ABCD8已知函數(shù)f(x)sin2x+sin2(x),則f(x)的最小值為( )ABCD9為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關(guān)關(guān)系,統(tǒng)計(jì)該店2017年每周六的銷售量及當(dāng)天氣溫得到如圖所示的散點(diǎn)圖(軸表示氣溫,軸表示銷售量),由散點(diǎn)圖可知與的相關(guān)關(guān)系為( )A正相關(guān),相關(guān)系數(shù)的值為B負(fù)相關(guān),相關(guān)系數(shù)
3、的值為C負(fù)相關(guān),相關(guān)系數(shù)的值為D正相關(guān),相關(guān)負(fù)數(shù)的值為10不等式組表示的平面區(qū)域?yàn)?,則( )A,B,C,D,11函數(shù)(其中是自然對(duì)數(shù)的底數(shù))的大致圖像為( )ABCD12已知命題:“關(guān)于的方程有實(shí)根”,若為真命題的充分不必要條件為,則實(shí)數(shù)的取值范圍是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知等比數(shù)列滿足公比,為其前項(xiàng)和,構(gòu)成等差數(shù)列,則_14已知函數(shù)為奇函數(shù),且與圖象的交點(diǎn)為,則_15若x,y均為正數(shù),且,則的最小值為_.16已知函數(shù),若函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1x2x3),則的取值范圍是_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟
4、。17(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.()求直線的直角坐標(biāo)方程與曲線的普通方程;()已知點(diǎn)設(shè)直線與曲線相交于兩點(diǎn),求的值.18(12分)在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)與交于、兩點(diǎn),中點(diǎn)為,的垂直平分線交于、.以為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系.(1)求的直角坐標(biāo)方程與點(diǎn)的直角坐標(biāo);(2)求證:.19(12分)已知函數(shù).(1)若,且,求證:;(2)若時(shí),恒有,求的最大值.20(12分)已知函數(shù),.(1)求證:在區(qū)間上有且僅有一個(gè)零點(diǎn),且;(2)若當(dāng)時(shí),不等式恒成立,求證
5、:.21(12分)如圖,在四棱錐中,底面為矩形,側(cè)面底面,為棱的中點(diǎn),為棱上任意一點(diǎn),且不與點(diǎn)、點(diǎn)重合(1)求證:平面平面;(2)是否存在點(diǎn)使得平面與平面所成的角的余弦值為?若存在,求出點(diǎn)的位置;若不存在,請(qǐng)說明理由22(10分)已知矩陣的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】求得復(fù)數(shù),結(jié)合復(fù)數(shù)除法運(yùn)算,求得的值.【詳解】易知,則.故選:B【點(diǎn)睛】本小題主要考查復(fù)數(shù)及其坐標(biāo)的對(duì)應(yīng),考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.2A【解析】首先找出與面所成角,根據(jù)所成角所在
6、三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關(guān)系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設(shè)中點(diǎn)為,連接,可知,同時(shí)易知,所以面,故即為與面所成角,有,故.故選:A.【點(diǎn)睛】本題主要考查了空間幾何題中線面夾角的計(jì)算,屬于基礎(chǔ)題.3A【解析】依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于中檔題.4A【解析】本題采用排除法: 由排除選項(xiàng)D;根據(jù)特殊值排除選項(xiàng)C;由,且無限接近于0時(shí), 排除選項(xiàng)B;【詳解】對(duì)于選項(xiàng)D:由題意可得, 令函數(shù) ,則,;即.
7、故選項(xiàng)D排除;對(duì)于選項(xiàng)C:因?yàn)?故選項(xiàng)C排除;對(duì)于選項(xiàng)B:當(dāng),且無限接近于0時(shí),接近于,,此時(shí).故選項(xiàng)B排除;故選項(xiàng):A【點(diǎn)睛】本題考查函數(shù)解析式較復(fù)雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號(hào)的正負(fù)等有關(guān)性質(zhì)進(jìn)行逐一排除是解題的關(guān)鍵;屬于中檔題.5A【解析】計(jì)算,再計(jì)算交集得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.6B【解析】M=y|y=2x,x0=y|y1,N=x|y=lg(2x-x2)=x|2x-x20=x|x2-2x0=x|0 xe,解得0 xe,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為 ,且 且f(1)=0;要使函數(shù)有3個(gè)不同的零點(diǎn),(1)
8、有兩個(gè)不同的解,此時(shí)有一個(gè)解;(2)有兩個(gè)不同的解,此時(shí)有一個(gè)解當(dāng)有兩個(gè)不同的解,此時(shí)有一個(gè)解,此時(shí) ,不符合題意;或是不符合題意;所以只能是 解得 ,此時(shí)=-m,此時(shí) 有兩個(gè)不同的解,此時(shí)有一個(gè)解此時(shí) ,不符合題意;或是不符合題意;所以只能是解得 ,此時(shí)=,綜上:的取值范圍是故答案為【點(diǎn)睛】本題主要考查了函數(shù)與導(dǎo)函數(shù)的綜合,考查到了函數(shù)的零點(diǎn),導(dǎo)函數(shù)的應(yīng)用,以及數(shù)形結(jié)合的思想、分類討論的思想,屬于綜合性極強(qiáng)的題目,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17()直線的直角坐標(biāo)方程為;曲線的普通方程為;().【解析】(I)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互
9、化公式即可;(II)將直線參數(shù)方程代入拋物線的普通方程,可得,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【詳解】由可得直線的直角坐標(biāo)方程為由曲線的參數(shù)方程,消去參數(shù)可得曲線的普通方程為.易知點(diǎn)在直線上,直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入曲線的普通方程,并整理得.設(shè)是方程的兩根,則有.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,直線參數(shù)方程的幾何意義,是一道容易題.18(1),;(2)見解析.【解析】(1)將曲線的極坐標(biāo)方程變形為,再由可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線的方程與曲線的方程聯(lián)立,求出點(diǎn)、的坐標(biāo),即可得出線段的中點(diǎn)的坐標(biāo);(2)求得,寫出直線
10、的參數(shù)方程,將直線的參數(shù)方程與曲線的普通方程聯(lián)立,利用韋達(dá)定理求得的值,進(jìn)而可得出結(jié)論.【詳解】(1)曲線的極坐標(biāo)方程可化為,即,將代入曲線的方程得,所以,曲線的直角坐標(biāo)方程為.將直線的極坐標(biāo)方程化為普通方程得,聯(lián)立,得或,則點(diǎn)、,因此,線段的中點(diǎn)為;(2)由(1)得,易知的垂直平分線的參數(shù)方程為(為參數(shù)),代入的普通方程得,因此,.【點(diǎn)睛】本題考查曲線的極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,同時(shí)也考查了直線參數(shù)幾何意義的應(yīng)用,涉及韋達(dá)定理的應(yīng)用,考查計(jì)算能力,屬于中等題.19(1)見解析;(2).【解析】(1)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,并設(shè),則,將不等式等價(jià)轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)在
11、區(qū)間上的單調(diào)性,通過推導(dǎo)出來證得結(jié)論;(2)構(gòu)造函數(shù),對(duì)實(shí)數(shù)分、,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最小值,再通過構(gòu)造新函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最大值,可得出的最大值.【詳解】(1),所以,函數(shù)單調(diào)遞增,所以,當(dāng)時(shí),此時(shí),函數(shù)單調(diào)遞減;當(dāng)時(shí),此時(shí),函數(shù)單調(diào)遞增.要證,即證.不妨設(shè),則,下證,即證,構(gòu)造函數(shù),所以,函數(shù)在區(qū)間上單調(diào)遞增,即,即,且函數(shù)在區(qū)間上單調(diào)遞增,所以,即,故結(jié)論成立;(2)由恒成立,得恒成立,令,則.當(dāng)時(shí),對(duì)任意的,函數(shù)在上單調(diào)遞增,當(dāng)時(shí),不符合題意;當(dāng)時(shí),;當(dāng)時(shí),令,得,此時(shí),函數(shù)單調(diào)遞增;令,得,此時(shí),函數(shù)單調(diào)遞減.令,設(shè),則.當(dāng)時(shí),此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),此時(shí)函數(shù)單
12、調(diào)遞減.所以,函數(shù)在處取得最大值,即.因此,的最大值為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)證明不等式,同時(shí)也考查了利用導(dǎo)數(shù)求代數(shù)式的最值,構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力,屬于難題.20(1)詳見解析;(2)詳見解析.【解析】(1)利用求導(dǎo)數(shù),判斷在區(qū)間上的單調(diào)性,然后再證異號(hào),即可證明結(jié)論;(2)當(dāng)時(shí),不等式恒成立,分離參數(shù)只需時(shí),恒成立,設(shè)(),需,根據(jù)(1)中的結(jié)論先求出,再構(gòu)造函數(shù)結(jié)合導(dǎo)數(shù)法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數(shù),則,所以在區(qū)間上是增函數(shù).又因?yàn)?,所以在區(qū)間上有且僅有一個(gè)零點(diǎn),且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當(dāng)時(shí),;當(dāng)時(shí),恒成立,設(shè)(),
13、所以.由(1)可知,使,所以,當(dāng)時(shí),當(dāng)時(shí),由此在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以.又因?yàn)?,所以,從而,所?令,則,所以在區(qū)間上是增函數(shù),所以,故.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、函數(shù)的零點(diǎn)、極值最值、不等式的證明,分離參數(shù)是解題的關(guān)鍵,意在考查邏輯推理、數(shù)學(xué)計(jì)算能力,屬于較難題.21(1)證明見解析 (2)存在,為中點(diǎn)【解析】(1)證明面,即證明平面平面;(2)以為坐標(biāo)原點(diǎn),為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標(biāo)系利用向量方法得,解得,所以為中點(diǎn)【詳解】(1)由于為中點(diǎn),又,故,所以為直角三角形且,即又因?yàn)槊?,面面,面面,故面,又面,所以面面?)由(1)知面,又四邊形為矩形,則兩兩垂直以為坐標(biāo)原點(diǎn),為軸正方向,為軸正方向,為軸正方向,建立空間直角坐標(biāo)系則,設(shè),則,設(shè)平面的法向量為,則有,令,則,則平面的一個(gè)法向量為,同理可得平面的一個(gè)法向量為,設(shè)平面與平面所成角為,則由題意可得,解得,所以點(diǎn)為中點(diǎn)【點(diǎn)睛】本題主要考查空間幾何位置關(guān)系的證明,考查空間二面角的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.22另
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州衛(wèi)生職業(yè)技術(shù)學(xué)院《食用菌栽培技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025湖南省安全員-C證考試題庫(kù)
- 2025山東省安全員B證考試題庫(kù)附答案
- 2025年湖北省建筑安全員知識(shí)題庫(kù)
- 【語(yǔ)文課件】《我的信念》課件
- 《壺口瀑布》課件
- 單位管理制度展示選集【人員管理篇】
- 單位管理制度展示合集【職員管理】十篇
- 電力天然氣周報(bào):多省2025年長(zhǎng)協(xié)電價(jià)落地11月我國(guó)天然氣表觀消費(fèi)量同比下降0.3
- 2024年上海市縣鄉(xiāng)教師選調(diào)考試《教育學(xué)》真題匯編帶解析含完整答案(各地真題)
- GB/T 42437-2023南紅鑒定
- 購(gòu)房屋貸款合同協(xié)議書
- 洛欒高速公路薄壁空心墩施工方案爬模施工
- 事業(yè)單位公開招聘工作人員政審表
- GB/T 35199-2017土方機(jī)械輪胎式裝載機(jī)技術(shù)條件
- GB/T 28591-2012風(fēng)力等級(jí)
- 思博安根測(cè)儀熱凝牙膠尖-說明書
- 出院小結(jié)模板
- HITACHI (日立)存儲(chǔ)操作說明書
- (新版教材)蘇教版二年級(jí)下冊(cè)科學(xué)全冊(cè)教案(教學(xué)設(shè)計(jì))
- 61850基礎(chǔ)技術(shù)介紹0001
評(píng)論
0/150
提交評(píng)論