版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1復數(shù)滿足,則復數(shù)等于()ABC2D-22博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓某嘉賓突發(fā)奇想,設計兩種乘車方案方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車記方案一與方案二坐到“3號”車的概率分別為P1,P2,則( )AP1P2BP1P2CP1+P2DP1P23在中,則=( )ABCD4設函數(shù),若在上有且僅有5個零點,則的取值范圍為( )ABCD5過橢圓的左焦點
3、的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標原點,則橢圓的離心率為( )ABCD6已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為( )ABCD7若為虛數(shù)單位,則復數(shù)在復平面上對應的點位于( )A第一象限B第二象限C第三象限D第四象限8為了進一步提升駕駛人交通安全文明意識,駕考新規(guī)要求駕校學員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導交通.現(xiàn)有甲、乙等5名駕校學員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有( )A12種B24種C36種D48種9已知集合,集合,則AB或CD10點為不等式組所表示的平面區(qū)域上的動點,則
4、的取值范圍是( )ABCD11M、N是曲線y=sinx與曲線y=cosx的兩個不同的交點,則|MN|的最小值為()ABCD212中,角的對邊分別為,若,則的面積為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13展開式中的系數(shù)為_.14已知數(shù)列滿足,則_15某高中共有1800人,其中高一、高二、高三年級的人數(shù)依次成等差數(shù)列,現(xiàn)用分層抽樣的方法從中抽取60人,那么高二年級被抽取的人數(shù)為_16在四面體中,與都是邊長為2的等邊三角形,且平面平面,則該四面體外接球的體積為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知a0,證明:118(12分)在直角
5、坐標系中,曲線的參數(shù)方程為(為參數(shù),為實數(shù))以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線與曲線交于,兩點,線段的中點為 (1)求線段長的最小值; (2)求點的軌跡方程19(12分)在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為(1)求直線l的普通方程與曲線C的直角坐標方程;(2)設點,直線l與曲線C交于不同的兩點A、B,求的值20(12分)如圖,在四棱錐中,底面為直角梯形,平面底面,為的中點,是棱上的點且,.求證:平面平面以;求二面角的大小.21(12分)已知多面體中,、均垂直于平
6、面,是的中點(1)求證:平面;(2)求直線與平面所成角的正弦值22(10分)已知等比數(shù)列中,是和的等差中項(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】通過復數(shù)的模以及復數(shù)的代數(shù)形式混合運算,化簡求解即可.【詳解】復數(shù)滿足,故選B.【點睛】本題主要考查復數(shù)的基本運算,復數(shù)模長的概念,屬于基礎題2C【解析】將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231
7、,所以,P1;方案二坐車可能:312、321,所以,P1;所以P1+P2故選C.【點睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數(shù),屬于基礎題.3B【解析】在上分別取點,使得,可知為平行四邊形,從而可得到,即可得到答案【詳解】如下圖,在上分別取點,使得,則為平行四邊形,故,故答案為B. 【點睛】本題考查了平面向量的線性運算,考查了學生邏輯推理能力,屬于基礎題4A【解析】由求出范圍,結合正弦函數(shù)的圖象零點特征,建立不等量關系,即可求解.【詳解】當時,在上有且僅有5個零點,.故選:A.【點睛】本題考查正弦型函數(shù)的性質,整體代換是解題的關鍵,屬于基礎題.5D【解析】求得點
8、的坐標,由,得出,利用向量的坐標運算得出點的坐標,代入橢圓的方程,可得出關于、的齊次等式,進而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點睛】本題考查橢圓離心率的求解,解答的關鍵就是要得出、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標來求解,考查計算能力,屬于中等題.6D【解析】利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據(jù)二次函數(shù)的性質,求得,由取得最小值為,求得結果.【詳解】由拋物線焦點在軸上,準線方程,則點到焦點的距離為,則,所以拋物線方程:,設,圓,圓心為,半
9、徑為1,則,當時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.7D【解析】根據(jù)復數(shù)的運算,化簡得到,再結合復數(shù)的表示,即可求解,得到答案【詳解】由題意,根據(jù)復數(shù)的運算,可得,所對應的點為位于第四象限.故選D.【點睛】本題主要考查了復數(shù)的運算,以及復數(shù)的幾何意義,其中解答中熟記復數(shù)的運算法則,準確化簡復數(shù)為代數(shù)形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題8C【解析】先將甲、乙兩人看作一個整體,當作一個元素,再將這四個元素分成3個部分,每一個部分至少
10、一個,再將這3部分分配到3個不同的路口,根據(jù)分步計數(shù)原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數(shù)原理,共有種方案。故選:C.【點睛】本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.9C【解析】由可得,解得或,所以或,又,所以,故選C10B【解析】作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,利用的幾何意義即可得到結論【詳解】不等式組作出可行域如圖:,的幾何意義是動點到的斜率,由圖象可知的斜率為1,的斜率為
11、:,則的取值范圍是:,故選:【點睛】本題主要考查線性規(guī)劃的應用,根據(jù)目標函數(shù)的幾何意義結合斜率公式是解決本題的關鍵11C【解析】兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設M(x1,y1),N(x2,y2),則x1=,x2=,|x1-x2|=,|y1-y2|=|sinx1-cosx2|=+=,|MN|=.故選C.12A【解析】先求出,由正弦定理求得,然后由面積公式計算【詳解】由題意,由得,故選:A【點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關系,兩角和的正弦公式與誘導公式,解題時要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解二、填空題:本題共4小題,每小題5
12、分,共20分。13【解析】變換,根據(jù)二項式定理計算得到答案.【詳解】的展開式的通項為:,取和,計算得到系數(shù)為:.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力和應用能力.14【解析】項和轉化可得,討論是否滿足,分段表示即得解【詳解】當時,由已知,可得,故,由-得,顯然當時不滿足上式,故答案為:【點睛】本題考查了利用求,考查了學生綜合分析,轉化劃歸,數(shù)學運算,分類討論的能力,屬于中檔題.15【解析】由三個年級人數(shù)成等差數(shù)列和總人數(shù)可求得高二年級共有人,根據(jù)抽樣比可求得結果.【詳解】設高一、高二、高三人數(shù)分別為,則且,解得:,用分層抽樣的方法抽取人,那么高二年級被抽取的人數(shù)為人故
13、答案為:.【點睛】本題考查分層抽樣問題的求解,涉及到等差數(shù)列的相關知識,屬于基礎題.16【解析】先確定球心的位置,結合勾股定理可求球的半徑,進而可得球的面積.【詳解】取的外心為,設為球心,連接,則平面,取的中點,連接,過做于點,易知四邊形為矩形,連接,設,.連接,則,三點共線,易知,所以,.在和中,即,所以,得.所以.【點睛】本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長方體外接球半徑是其對角線的一半.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17證明見解析【解析】利用分析法,證明
14、a即可【詳解】證明:a0,a1,a10,要證明1,只要證明a1(a)14(a)+4,只要證明:a,a1,原不等式成立【點睛】本題考查不等式的證明,著重考查分析法的運用,考查推理論證能力,屬于中檔題18(1)(2)【解析】(1)將曲線的方程化成直角坐標方程為,當時,線段取得最小值,利用幾何法求弦長即可.(2)當點與點不重合時,設,由利用向量的數(shù)量積等于可求解,最后驗證當點與點重合時也滿足.【詳解】解曲線的方程化成直角坐標方程為即圓心,半徑,曲線為過定點的直線,易知在圓內,當時,線段長最小為當點與點不重合時,設, 化簡得當點與點重合時,也滿足上式,故點的軌跡方程為【點睛】本題考查了極坐標與普通方程
15、的互化、直線與圓的位置關系、列方程求動點的軌跡方程,屬于基礎題.19(1),(2)【解析】(1)利用極坐標與直角坐標的互化公式即可把曲線的極坐標方程化為直角坐標方程,利用消去參數(shù)即可得到直線的直角坐標方程;(2) 由于在直線上,寫出直線的標準參數(shù)方程參數(shù)方程,代入曲線的方程利用參數(shù)的幾何意義即可得出求解即可.【詳解】(1)直線的普通方程為,即,根據(jù)極坐標與直角坐標之間的相互轉化,而,則,即,故直線l的普通方程為,曲線C的直角坐標方程(2)點在直線l上,且直線的傾斜角為,可設直線的參數(shù)方程為:(t為參數(shù)),代入到曲線C的方程得,由參數(shù)的幾何意義知【點睛】熟練掌握極坐標與直角坐標的互化公式、方程思
16、想、直線的參數(shù)方程中的參數(shù)的幾何意義是解題的關鍵,難度一般.20證明見解析;.【解析】推導出,從而平面,由此證明平面平面以;以為原點,建立空間直角坐標系,利用法向量求出二面角的大小.【詳解】解:,為的中點,四邊形為平行四邊形,.,,即.又平面平面,且平面平面,平面.平面,平面平面.,為的中點,.平面平面,且平面平面,平面.如圖,以為原點建立空間直角坐標系,則平面的一個法向量為,設,則,在平面中,設平面的法向量為,則,即,平面的一個法向量為,由圖知二面角為銳角,所以所求二面角大小為.【點睛】本題考查面面垂直的證明,考查二面角的大小的求法,考查了空間向量的應用,屬于中檔題.21(1)見解析;(2)【解析】(1)取的中點,連接、,推導出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點到平面的距離等于點到平面的距離,在平面內過點作于點,就是到平面的距離,也就是點到平面的距離,由此能求出直線與平面所成角的正弦值【詳解】(1)取的中點,連接、,、分別為、的中點,則且,、均垂直于平面,且,則,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面;(2)由,平面,平面,平面,點到平面的距離等于點到平面的距離,在平面內過點作于點,平面,平面,平面,即就是到平面的距離,也就是點到平面的距離,設,則到平面的距離,因此,直線與平面所成角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園中班衣服課程設計
- 英才課程設計
- 提升學生生活自理能力的勞動教育課程設計
- GB/T 30844.1-20241 kV及以下通用變頻調速設備第1部分:技術條件
- GB/T 28988-2024花卉有害生物防治技術規(guī)程
- 黑龍江林業(yè)職業(yè)技術學院《建筑模型制作與造型設計課程設計》2023-2024學年第一學期期末試卷
- 2025年度瓷磚生產線節(jié)能減排合同范本3篇
- 2025年度MCN機構與游戲公司IP合作合同3篇
- 2024版石灰石交易違約責任認定合同
- 2024年物業(yè)購買:分期還款及交付合同
- 薪酬與福利管理實務-習題答案 第五版
- 廢舊物資處置申請表
- GB/T 37234-2018文件鑒定通用規(guī)范
- GB/T 31888-2015中小學生校服
- 質量檢查考核辦法
- 云南省普通初中學生成長記錄-基本素質發(fā)展初一-初三
- 2023年系統(tǒng)性硬化病診斷及診療指南
- 外科醫(yī)師手術技能評分標準
- 《英語教師職業(yè)技能訓練簡明教程》全冊配套優(yōu)質教學課件
- 采購控制程序
- 六年級上冊數(shù)學簡便計算題200題專項練習
評論
0/150
提交評論