




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容
2、是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為( )ABCD2已知為等腰直角三角形,為所在平面內(nèi)一點,且,則( )ABCD3已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是( )ABCD4在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關(guān)系的概率是( )A0.2B0.5C0.4D0.8
3、5要得到函數(shù)的圖象,只需將函數(shù)的圖象( )A向右平移個單位B向右平移個單位C向左平移個單位D向左平移個單位6我國南北朝時的數(shù)學(xué)著作張邱建算經(jīng)有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金( )A多1斤B少1斤C多斤D少斤7 若x,y滿足約束條件的取值范圍是A0,6B0,4C6, D4, 8若滿足約束條件則的最大值為( )A10B8C5D39如下的程序框圖的算法思路源于我國古代數(shù)學(xué)名著九章算術(shù)中的“更相減損術(shù)”執(zhí)行該程序框圖,
4、若輸入的a,b分別為176,320,則輸出的a為( )A16B18C20D1510下列函數(shù)中,在區(qū)間上單調(diào)遞減的是( )ABC D11設(shè)是虛數(shù)單位,則( )ABCD12已知函數(shù)是奇函數(shù),則的值為( )A10B9C7D1二、填空題:本題共4小題,每小題5分,共20分。13已知函數(shù)在上單調(diào)遞增,則實數(shù)a值范圍為_.14已知雙曲線(a0,b0)的一條漸近線方程為,則該雙曲線的離心率為_15已知一組數(shù)據(jù)1.6,1.8,2,2.2,2.4,則該組數(shù)據(jù)的方差是_16已知拋物線的焦點為,斜率為2的直線與的交點為,若,則直線的方程為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)
5、某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規(guī)則如下:抽獎?wù)邤S各面標有點數(shù)的正方體骰子次,若擲得點數(shù)大于,則可繼續(xù)在抽獎箱中抽獎;否則獲得三等獎,結(jié)束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎?wù)邚南渲腥我饷鰝€球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數(shù)學(xué)期望不超過元,求的最小值.18(12分)在平面直角坐標系中,已知橢圓的中心為坐標原點焦點在軸上,右
6、頂點到右焦點的距離與它到右準線的距離之比為(1)求橢圓的標準方程;(2)若是橢圓上關(guān)于軸對稱的任意兩點,設(shè),連接交橢圓于另一點求證:直線過定點并求出點的坐標;(3)在(2)的條件下,過點的直線交橢圓于兩點,求的取值范圍19(12分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)時,若對一切恒成立,求a的取值范圍.20(12分)已知函數(shù),其導(dǎo)函數(shù)為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.21(12分)已知正項數(shù)列的前項和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設(shè)正項數(shù)列的前項和為,若,且.求數(shù)列的通項公式;求證:.22(10分)已知(1)若的解集為,求的值;(2)若對任意
7、,不等式恒成立,求實數(shù)的取值范圍參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)程序框圖列舉出程序的每一步,即可得出輸出結(jié)果.【詳解】輸入,不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)不成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;成立,跳出循環(huán),輸出i的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結(jié)果,考查計算能力,屬于基礎(chǔ)題.2D【解析】以AB,AC分別為x軸和y軸建立坐標系,結(jié)合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數(shù)量積
8、可得答案.【詳解】如圖建系,則,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.3D【解析】設(shè)雙曲線的左焦點為,連接,設(shè),則,和中,利用勾股定理計算得到答案.【詳解】設(shè)雙曲線的左焦點為,連接,設(shè),則,根據(jù)對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.4B【解析】利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火
9、土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎(chǔ)題.5D【解析】直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結(jié)論即可;【詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位故選:D【點睛】本題考查三角函數(shù)圖象平移的應(yīng)用問題,屬于基礎(chǔ)題6C【解析】設(shè)這十等人所得黃金的重量從大到小依次組成等差數(shù)列 則 由等差數(shù)列的性質(zhì)得 ,故選C7D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標函數(shù)z=x+2y經(jīng)過C點時,函數(shù)取得最小值,由解得C(2,1),目標函數(shù)的最小值為:4目標函數(shù)的范圍是4,+)故選D8
10、D【解析】畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標函數(shù)為直線方程的斜截式,.由圖可知當(dāng)直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標函數(shù)轉(zhuǎn)化為 的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標函數(shù)即可求出最值.注意畫可行域時,邊界線的虛實問題.9A【解析】根據(jù)題意可知最后計算的結(jié)果為的最大公約數(shù).【詳解】輸入的a,b分別為,根據(jù)流程圖可知最后計算的結(jié)果為的最大公約數(shù),按流程圖計算,易得176和320的最大公約數(shù)為16,故選:A.【點睛
11、】本題考查的是利用更相減損術(shù)求兩個數(shù)的最大公約數(shù),難度較易.10C【解析】由每個函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因為函數(shù)和在遞增,而在遞減.故選:C【點睛】本題主要考查常見簡單函數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題.11A【解析】利用復(fù)數(shù)的乘法運算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點睛】本題考查復(fù)數(shù)的乘法運算,考查計算能力,屬于基礎(chǔ)題.12B【解析】根據(jù)分段函數(shù)表達式,先求得的值,然后結(jié)合的奇偶性,求得的值.【詳解】因為函數(shù)是奇函數(shù),所以,.故選:B【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結(jié)合思想.意在考查學(xué)生的運算能力,分析問題、解決問題的能力.二、填空
12、題:本題共4小題,每小題5分,共20分。13【解析】由在上恒成立可求解【詳解】,令,又,從而,令,問題等價于在時恒成立,解得故答案為:【點睛】本題考查函數(shù)的單調(diào)性,解題關(guān)鍵是問題轉(zhuǎn)化為恒成立,利用換元法和二次函數(shù)的性質(zhì)易求解14【解析】根據(jù)題意,由雙曲線的漸近線方程可得,即a2b,進而由雙曲線的幾何性質(zhì)可得cb,由雙曲線的離心率公式計算可得答案【詳解】根據(jù)題意,雙曲線的漸近線方程為yx,又由該雙曲線的一條漸近線方程為x2y0,即yx,則有,即a2b,則cb,則該雙曲線的離心率e;故答案為:【點睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是分析a、b之間的關(guān)系,屬于基礎(chǔ)題150.08【解析】先求解這組數(shù)據(jù)
13、的平均數(shù),然后利用方差的公式可得結(jié)果.【詳解】首先求得,故答案為:0.08.【點睛】本題主要考查數(shù)據(jù)的方差,明確方差的計算公式是求解的關(guān)鍵,側(cè)重考查數(shù)據(jù)分析的核心素養(yǎng).16【解析】設(shè)直線l的方程為,聯(lián)立直線l與拋物線C的方程,得到A,B點橫坐標的關(guān)系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設(shè)直線由題設(shè)得,故,由題設(shè)可得由可得,則,從而,得,所以l的方程為,故答案為:【點睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡單幾何性質(zhì),直線與拋物線的位置關(guān)系,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17;.【解析】設(shè)顧客獲得三等獎為事件,因為顧客擲
14、得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機變量的可能取值為,相應(yīng)求出概率,求出期望,化簡得,由題意可知,即,求出的最小值.【詳解】設(shè)顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機變量的可能取值為, 且,所以隨機變量的數(shù)學(xué)期望,化簡得,由題意可知,即,化簡得,因為,解得,即的最小值為.【點睛】本題主要考查概率和期望的求法,屬于??碱}.18(1);(2)證明詳見解析,;(3).【解析】(1)根據(jù)題意列出關(guān)于的等式求解即可.(2)先根據(jù)對稱性,直線過的定點一定在軸上,再設(shè)直線的方程為,
15、聯(lián)立直線與橢圓的方程, 進而求得的方程,并代入,化簡分析即可.(3)先分析過點的直線斜率不存在時的值,再分析存在時,設(shè)直線的方程為,聯(lián)立直線與橢圓的方程,得出韋達定理再代入求解出關(guān)于的解析式,再求解范圍即可.【詳解】解:設(shè)橢圓的標準方程焦距為,由題意得,由,可得則,所以橢圓的標準方程為;證明:根據(jù)對稱性,直線過的定點一定在軸上,由題意可知直線的斜率存在,設(shè)直線的方程為,聯(lián)立,消去得到,設(shè)點,則所以,所以的方程為,令得,將,代入上式并整理,整理得,所以,直線與軸相交于定點當(dāng)過點的直線的斜率不存在時,直線的方程為,此時,當(dāng)過點的直線斜率存在時,設(shè)直線的方程為,且在橢圓上,聯(lián)立方程組,消去,整理得,
16、則所以所以,所以,由得,綜上可得,的取值范圍是【點睛】本題主要考查了橢圓的基本量求解以及定值和范圍的問題,需要分析直線的斜率是否存在的情況,再聯(lián)立直線與橢圓的方程,根據(jù)韋達定理以及所求的解析式,結(jié)合參數(shù)的范圍進行求解.屬于難題.19(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為 ;(2) 【解析】(1)求導(dǎo),根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系即可求出.(2)解法一:分類討論:當(dāng)時,觀察式子可得恒成立;當(dāng)時,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,可知;當(dāng)時,令,由,根據(jù)零點存在性定理可得,進而可得在上,單調(diào)遞減,即不滿足題意;解法二:通過分離參數(shù)可知條件等價于恒成立,進而記,問題轉(zhuǎn)化為求在上的最小值問題,通過二次求導(dǎo),結(jié)合洛
17、比達法則計算可得結(jié)論.【詳解】(1)當(dāng),令,解得,當(dāng)時,當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.(2)解法一:當(dāng)時,函數(shù),若時,此時對任意都有, 所以恒成立;若時,對任意都有,所以,所以在上為增函數(shù),所以,即時滿足題意;若時,令,則,所以在上單調(diào)遞增,可知,一定存在使得,且當(dāng)時,所以在上,單調(diào)遞減,從而有時,不滿足題意;綜上可知,實數(shù)a的取值范圍為. 解法二:當(dāng)時,函數(shù),又當(dāng)時,對一切恒成立等價于恒成立,記,其中,則,令,則,在上單調(diào)遞增,恒成立,從而在上單調(diào)遞增,由洛比達法則可知,解得. 實數(shù)a的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與不等式恒成立問題,考查了分類與整合的解題思想,涉
18、及分離參數(shù)法等技巧、涉及到洛比達法則等知識,注意解題方法的積累,屬于難題.20(1) (2)證明見解析【解析】(1)求出的導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,再利用函數(shù)單調(diào)性解函數(shù)型不等式;(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷在區(qū)間上單調(diào)遞減,結(jié)合可得結(jié)果.【詳解】(1)若,則.設(shè),則,所以在上單調(diào)遞減,在上單調(diào)遞增.又當(dāng)時,;當(dāng)時,;當(dāng)時,所以所以在上單調(diào)遞增,又,所以不等式的解集為.(2)設(shè),再令,在上單調(diào)遞減,又,.即【點睛】本題考查利用函數(shù)的導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性,再利用函數(shù)的單調(diào)性來解決不等式問題,屬于較難題.21(1);(2);詳見解析.【解析】(1)依題意可表示,相減得,由等比數(shù)列通項公式轉(zhuǎn)化為首項與公比,解得答案,并由其都是正項數(shù)列舍根; (2)由題意可表示,兩式相減得,由其都是正項并整理可得遞推關(guān)系,由等差數(shù)列的通項公式即可得答案;由已知關(guān)系,表示并相減即可表示遞推關(guān)系,顯然當(dāng)時,成立,當(dāng),時,表示,由分組求和與正項數(shù)列性質(zhì)放縮不等式得證.【詳解】解:(1)依題意可得,兩式相減,得,所以,因為,所以,且,解得.(2)因為,所以,兩式相減,得,即.因為,所以,即.而當(dāng)時,可得,故,所以對任意的正整數(shù)都成立,所以數(shù)列是等差數(shù)列,公差為1,首項為1,所以數(shù)列的通項公式為.因為,所以,兩式相減,得,即,所以對任意的正整數(shù),都有.令,而當(dāng)時,顯然
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小區(qū)公共場地管理制度
- 軟件測試中的問題解決能力培養(yǎng)試題及答案
- 公司防疫防控管理制度
- 化驗用藥安全管理制度
- 學(xué)校參與社區(qū)管理制度
- 學(xué)校飲用衛(wèi)生管理制度
- 單位項目資金管理制度
- 可持續(xù)發(fā)展的2025年行政組織理論試題及答案
- 卡車司乘人員管理制度
- 學(xué)校精準資助管理制度
- 項目驗收單簡潔模板
- 托物言志作文寫作指導(dǎo)
- Q∕SHCG 67-2013 采油用清防蠟劑技術(shù)要求
- 榆林智能礦山項目招商引資方案【參考范文】
- 碘對比劑過敏性休克應(yīng)急搶救演練記錄
- 餐飲商鋪工程條件一覽表
- 液壓的爬模檢查記錄簿表
- 申請支付工程款的函
- 出國簽證戶口本翻譯模板(共4頁)
- 算法設(shè)計與分析課程大作業(yè)
- 醫(yī)院長期、臨時醫(yī)囑單模板
評論
0/150
提交評論