




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知為拋物線的準(zhǔn)線,拋物線上的點(diǎn)到的距離為,點(diǎn)的坐標(biāo)為,則的最小值是( )AB4C2D2已知集合,則ABCD3直線l過(guò)拋物線的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則的最小值是A10B9C8D74若函數(shù)()的圖象過(guò)點(diǎn),則( )A函數(shù)的值域是B點(diǎn)是的一
2、個(gè)對(duì)稱中心C函數(shù)的最小正周期是D直線是的一條對(duì)稱軸5定義,已知函數(shù),則函數(shù)的最小值為( )ABCD6黨的十九大報(bào)告明確提出:在共享經(jīng)濟(jì)等領(lǐng)域培育增長(zhǎng)點(diǎn)、形成新動(dòng)能.共享經(jīng)濟(jì)是公眾將閑置資源通過(guò)社會(huì)化平臺(tái)與他人共享,進(jìn)而獲得收入的經(jīng)濟(jì)現(xiàn)象.為考察共享經(jīng)濟(jì)對(duì)企業(yè)經(jīng)濟(jì)活躍度的影響,在四個(gè)不同的企業(yè)各取兩個(gè)部門(mén)進(jìn)行共享經(jīng)濟(jì)對(duì)比試驗(yàn),根據(jù)四個(gè)企業(yè)得到的試驗(yàn)數(shù)據(jù)畫(huà)出如下四個(gè)等高條形圖,最能體現(xiàn)共享經(jīng)濟(jì)對(duì)該部門(mén)的發(fā)展有顯著效果的圖形是( )ABCD7在中,內(nèi)角的平分線交邊于點(diǎn),則的面積是( )ABCD8若函數(shù)的圖象如圖所示,則的解析式可能是( )ABCD9已知等比數(shù)列滿足,等差數(shù)列中,為數(shù)列的前項(xiàng)和,則(
3、)A36B72CD10已知是空間中兩個(gè)不同的平面,是空間中兩條不同的直線,則下列說(shuō)法正確的是( )A若,且,則B若,且,則C若,且,則D若,且,則11已知點(diǎn)是拋物線:的焦點(diǎn),點(diǎn)為拋物線的對(duì)稱軸與其準(zhǔn)線的交點(diǎn),過(guò)作拋物線的切線,切點(diǎn)為,若點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為( )ABCD12設(shè)集合、是全集的兩個(gè)子集,則“”是“”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13函數(shù)滿足,當(dāng)時(shí),若函數(shù)在上有1515個(gè)零點(diǎn),則實(shí)數(shù)的范圍為_(kāi).14已知向量,若,則_.15已知集合,則_16(5分)國(guó)家禁毒辦于2019
4、年11月5日至12月15日在全國(guó)青少年毒品預(yù)防教育數(shù)字化網(wǎng)絡(luò)平臺(tái)上開(kāi)展2019年全國(guó)青少年禁毒知識(shí)答題活動(dòng),活動(dòng)期間進(jìn)入答題專區(qū),點(diǎn)擊“開(kāi)始答題”按鈕后,系統(tǒng)自動(dòng)生成20道題.已知某校高二年級(jí)有甲、乙、丙、丁、戊五位同學(xué)在這次活動(dòng)中答對(duì)的題數(shù)分別是,則這五位同學(xué)答對(duì)題數(shù)的方差是_三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知點(diǎn)P在拋物線上,且點(diǎn)P的橫坐標(biāo)為2,以P為圓心,為半徑的圓(O為原點(diǎn)),與拋物線C的準(zhǔn)線交于M,N兩點(diǎn),且(1)求拋物線C的方程;(2)若拋物線的準(zhǔn)線與y軸的交點(diǎn)為H過(guò)拋物線焦點(diǎn)F的直線l與拋物線C交于A,B,且,求的值18(12分)已知函
5、數(shù).(1)當(dāng)a=2時(shí),求不等式的解集;(2)設(shè)函數(shù).當(dāng)時(shí),求的取值范圍.19(12分)已知函數(shù)當(dāng)時(shí),求函數(shù)的極值;若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍20(12分)已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)的值域;(2),求實(shí)數(shù)的取值范圍.21(12分)已知數(shù)列中,前項(xiàng)和為,若對(duì)任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項(xiàng)和;(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問(wèn):是否存在數(shù)列,使得對(duì)任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請(qǐng)說(shuō)明理由.22(10分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余
6、弦值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】設(shè)拋物線焦點(diǎn)為,由題意利用拋物線的定義可得,當(dāng)共線時(shí),取得最小值,由此求得答案.【詳解】解:拋物線焦點(diǎn),準(zhǔn)線,過(guò)作交于點(diǎn),連接由拋物線定義,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí),取“”號(hào),的最小值為.故選:B.【點(diǎn)睛】本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.2C【解析】分析:根據(jù)集合可直接求解.詳解:,故選C點(diǎn)睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問(wèn)題時(shí)要先將參與運(yùn)算的集合化為最簡(jiǎn)形式,如果是“離散型”集
7、合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進(jìn)行運(yùn)算.3B【解析】根據(jù)拋物線中過(guò)焦點(diǎn)的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€l過(guò)拋物線的焦點(diǎn),由過(guò)拋物線焦點(diǎn)的弦的性質(zhì)可知 所以 因?yàn)?為線段長(zhǎng)度,都大于0,由基本不等式可知,此時(shí)所以選B【點(diǎn)睛】本題考查了拋物線的基本性質(zhì)及其簡(jiǎn)單應(yīng)用,基本不等式的用法,屬于中檔題4A【解析】根據(jù)函數(shù)的圖像過(guò)點(diǎn),求出,可得,再利用余弦函數(shù)的圖像與性質(zhì),得出結(jié)論.【詳解】由函數(shù)()的圖象過(guò)點(diǎn),可得,即,故,對(duì)于A,由,則,故A正確;對(duì)于B,當(dāng)時(shí),故B錯(cuò)誤;對(duì)于C,故C錯(cuò)誤;對(duì)于D,當(dāng)時(shí),故D錯(cuò)誤;故選
8、:A【點(diǎn)睛】本題主要考查了二倍角的余弦公式、三角函數(shù)的圖像與性質(zhì),需熟記性質(zhì)與公式,屬于基礎(chǔ)題.5A【解析】根據(jù)分段函數(shù)的定義得,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,則,(當(dāng)且僅當(dāng),即時(shí)“”成立.此時(shí),,的最小值為,故選:A.【點(diǎn)睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.6D【解析】 根據(jù)四個(gè)列聯(lián)表中的等高條形圖可知, 圖中D中共享與不共享的企業(yè)經(jīng)濟(jì)活躍度的差異最大, 它最能體現(xiàn)共享經(jīng)濟(jì)對(duì)該部門(mén)的發(fā)展有顯著效果,故選D7B【解析】利用正弦定理求出,可得出,然后利用余弦定理求出,進(jìn)而求出,然后利
9、用三角形的面積公式可計(jì)算出的面積.【詳解】為的角平分線,則.,則,在中,由正弦定理得,即,在中,由正弦定理得,即,得,解得,由余弦定理得,因此,的面積為.故選:B.【點(diǎn)睛】本題考查三角形面積的計(jì)算,涉及正弦定理和余弦定理以及三角形面積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.8A【解析】由函數(shù)性質(zhì),結(jié)合特殊值驗(yàn)證,通過(guò)排除法求得結(jié)果.【詳解】對(duì)于選項(xiàng)B, 為 奇函數(shù)可判斷B錯(cuò)誤;對(duì)于選項(xiàng)C,當(dāng)時(shí), ,可判斷C錯(cuò)誤;對(duì)于選項(xiàng)D, ,可知函數(shù)在第一象限的圖象無(wú)增區(qū)間,故D錯(cuò)誤;故選:A.【點(diǎn)睛】本題考查已知函數(shù)的圖象判斷解析式問(wèn)題,通過(guò)函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關(guān)鍵,難度一般.9A【解析】
10、根據(jù)是與的等比中項(xiàng),可求得,再利用等差數(shù)列求和公式即可得到.【詳解】等比數(shù)列滿足,所以,又,所以,由等差數(shù)列的性質(zhì)可得.故選:A【點(diǎn)睛】本題主要考查的是等比數(shù)列的性質(zhì),考查等差數(shù)列的求和公式,考查學(xué)生的計(jì)算能力,是中檔題.10D【解析】利用線面平行和垂直的判定定理和性質(zhì)定理,對(duì)選項(xiàng)做出判斷,舉出反例排除.【詳解】解:對(duì)于,當(dāng),且,則與的位置關(guān)系不定,故錯(cuò);對(duì)于,當(dāng)時(shí),不能判定,故錯(cuò);對(duì)于,若,且,則與的位置關(guān)系不定,故錯(cuò);對(duì)于,由可得,又,則故正確故選:【點(diǎn)睛】本題考查空間線面位置關(guān)系.判斷線面位置位置關(guān)系利用好線面平行和垂直的判定定理和性質(zhì)定理. 一般可借助正方體模型,以正方體為主線直觀感知
11、并準(zhǔn)確判斷11D【解析】根據(jù)拋物線的性質(zhì),設(shè)出直線方程,代入拋物線方程,求得k的值,設(shè)出雙曲線方程,求得2a丨AF2丨丨AF1丨(1)p,利用雙曲線的離心率公式求得e【詳解】直線F2A的直線方程為:ykx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x22py方程,整理得:x22pkx+p20,4k2p24p20,解得:k1,A(p,),設(shè)雙曲線方程為:1,丨AF1丨p,丨AF2丨p,2a丨AF2丨丨AF1丨( 1)p,2cp,離心率e1,故選:D【點(diǎn)睛】本題考查拋物線及雙曲線的方程及簡(jiǎn)單性質(zhì),考查轉(zhuǎn)化思想,考查計(jì)算能力,屬于中檔題12C【解析】作出韋恩圖,數(shù)形結(jié)合,即可得出結(jié)論.【詳解】如圖所
12、示,同時(shí).故選:C.【點(diǎn)睛】本題考查集合關(guān)系及充要條件,注意數(shù)形結(jié)合方法的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由已知,在上有3個(gè)根,分,四種情況討論的單調(diào)性、最值即可得到答案.【詳解】由已知,的周期為4,且至多在上有4個(gè)根,而含505個(gè)周期,所以在上有3個(gè)根,設(shè),易知在上單調(diào)遞減,在,上單調(diào)遞增,又,.若時(shí),在上無(wú)根,在必有3個(gè)根,則,即,此時(shí);若時(shí),在上有1個(gè)根,注意到,此時(shí)在不可能有2個(gè)根,故不滿足;若時(shí),要使在有2個(gè)根,只需,解得;若時(shí),在上單調(diào)遞增,最多只有1個(gè)零點(diǎn),不滿足題意;綜上,實(shí)數(shù)的范圍為.故答案為:【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零
13、點(diǎn)個(gè)數(shù)問(wèn)題,涉及到函數(shù)的周期性、分類討論函數(shù)的零點(diǎn),是一道中檔題.14-1【解析】由向量垂直得向量的數(shù)量積為0,根據(jù)數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)論【詳解】由已知,故答案為:1【點(diǎn)睛】本題考查向量垂直的坐標(biāo)運(yùn)算掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵15【解析】由于,則162【解析】由這五位同學(xué)答對(duì)的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17 (1) (2)4【解析】(1)將點(diǎn)P橫坐標(biāo)代入拋物線中求得點(diǎn)P的坐標(biāo),利用點(diǎn)P到準(zhǔn)線的距離d和勾股定理列方程求出p的值即可;(2)設(shè)A、B點(diǎn)坐標(biāo)以及直線AB的方程,代入拋物線方程,利用根與系數(shù)的關(guān)系,以及
14、垂直關(guān)系,得出關(guān)系式,計(jì)算的值即可【詳解】(1)將點(diǎn)P橫坐標(biāo)代入中,求得,P(2,),點(diǎn)P到準(zhǔn)線的距離為,解得,拋物線C的方程為:;(2)拋物線的焦點(diǎn)為F(0,1),準(zhǔn)線方程為,;設(shè),直線AB的方程為,代入拋物線方程可得,由,可得,又,即,把代入得,則【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系,以及拋物線與圓的方程應(yīng)用問(wèn)題,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題18(1);(2)【解析】試題分析:(1)當(dāng)時(shí);(2)由等價(jià)于,解之得.試題解析: (1)當(dāng)時(shí),.解不等式,得.因此,的解集為.(2)當(dāng)時(shí),當(dāng)時(shí)等號(hào)成立,所以當(dāng)時(shí),等價(jià)于. 當(dāng)時(shí),等價(jià)于,無(wú)解.當(dāng)時(shí),等價(jià)于,解得.所以的取值范圍是.考點(diǎn):不等式
15、選講.19(1)當(dāng)時(shí),函數(shù)取得極小值為,無(wú)極大值;(2)【解析】試題分析:(1),通過(guò)求導(dǎo)分析,得函數(shù)取得極小值為,無(wú)極大值;(2),所以,通過(guò)求導(dǎo)討論,得到的取值范圍是試題解析:(1)函數(shù)的定義域?yàn)楫?dāng)時(shí),所以 所以當(dāng)時(shí),當(dāng)時(shí),所以函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以當(dāng)時(shí),函數(shù)取得極小值為,無(wú)極大值; (2)設(shè)函數(shù)上點(diǎn)與函數(shù)上點(diǎn)處切線相同,則 所以 所以,代入得: 設(shè),則不妨設(shè)則當(dāng)時(shí),當(dāng)時(shí),所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增, 代入可得:設(shè),則對(duì)恒成立,所以在區(qū)間上單調(diào)遞增,又所以當(dāng)時(shí),即當(dāng)時(shí), 又當(dāng)時(shí) 因此當(dāng)時(shí),函數(shù)必有零點(diǎn);即當(dāng)時(shí),必存在使得成立;即存在使得函數(shù)上點(diǎn)與函數(shù)上點(diǎn)處切線
16、相同又由得:所以單調(diào)遞減,因此所以實(shí)數(shù)的取值范圍是20(1);(2).【解析】(1)將代入函數(shù)的解析式,將函數(shù)的及解析式變形為分段函數(shù),利用二次函數(shù)的基本性質(zhì)可求得函數(shù)的值域;(2)由參變量分離法得出在區(qū)間內(nèi)有解,分和討論,求得函數(shù)的最大值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),.當(dāng)時(shí),;當(dāng)時(shí),.函數(shù)的值域?yàn)?;?)不等式等價(jià)于,即在區(qū)間內(nèi)有解當(dāng)時(shí),此時(shí),則;當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,當(dāng)時(shí),則.綜上,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查含絕對(duì)值函數(shù)的值域與含絕對(duì)值不等式有解的問(wèn)題,利用絕對(duì)值的應(yīng)用將函數(shù)轉(zhuǎn)化為二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵,考查分類討論思想的應(yīng)用,屬于中
17、等題.21(1)(2)存在,【解析】由數(shù)列為“數(shù)列”可得,,兩式相減得,又,利用等比數(shù)列通項(xiàng)公式即可求出,進(jìn)而求出;由題意得,兩式相減得,據(jù)此可得,當(dāng)時(shí),進(jìn)而可得,即數(shù)列為常數(shù)列,進(jìn)而可得,結(jié)合,得到關(guān)于的不等式,再由時(shí),且為整數(shù)即可求出符合題意的的所有值.【詳解】因?yàn)閿?shù)列為“數(shù)列”,所以,故,兩式相減得, 在中令,則可得,故所以,所以數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,所以,因?yàn)?,所? (2)由題意得,故,兩式相減得 所以,當(dāng)時(shí),又因?yàn)樗援?dāng)時(shí),所以成立,所以當(dāng)時(shí),數(shù)列是常數(shù)列, 所以 因?yàn)楫?dāng)時(shí),成立,所以,所以在中令,因?yàn)?,所以可得,所以,由時(shí),且為整數(shù),可得,把分別代入不等式可得,,所以存在數(shù)列符合題意,的所有值為.【點(diǎn)睛】本題考查數(shù)列的新定義、等比數(shù)列的通項(xiàng)公式和數(shù)列遞推公式的運(yùn)用;考查運(yùn)算求解能力、邏輯推理能力和對(duì)新定義的理解能力;通過(guò)反復(fù)利用遞推公式,得到數(shù)列為常數(shù)列是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.22(1)證明見(jiàn)解析;(2)【解析】(1)取BC的中點(diǎn)O,則,由是等邊三角形,得,從而得到
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國(guó)織物染色機(jī)行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 2025-2030中國(guó)纖維素涂料行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 2025-2030中國(guó)糞便隱匿試驗(yàn)行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 2025-2030中國(guó)碳酸亞乙酯行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 2025-2030中國(guó)硫酸鉻行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 2025-2030中國(guó)睫毛膏市場(chǎng)深度調(diào)查研究報(bào)告
- 2025-2030中國(guó)眉筆行業(yè)市場(chǎng)運(yùn)行分析及發(fā)展前景與投資研究報(bào)告
- 2025-2030中國(guó)目鏡行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 2025-2030中國(guó)電玩音樂(lè)行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 2025-2030中國(guó)電機(jī)主軸行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 人格障礙患者的護(hù)理
- 人工智能大模型
- 1輸變電工程施工質(zhì)量驗(yàn)收統(tǒng)一表式(線路工程)-2024年版
- 2024年全國(guó)鄉(xiāng)村振興職業(yè)技能大賽“育嬰”賽項(xiàng)考試題庫(kù)(決賽用)
- 《內(nèi)在強(qiáng)大:應(yīng)變?nèi)f難的力量》記錄
- TSHJX 067-2024 基于TACS的全自動(dòng)運(yùn)行線路綜合聯(lián)調(diào)技術(shù)規(guī)范
- 2024至2030年中國(guó)擦窗機(jī)器人產(chǎn)業(yè)競(jìng)爭(zhēng)現(xiàn)狀及投資決策建議報(bào)告
- 益母草顆粒的保肝作用機(jī)制
- 中國(guó)經(jīng)濟(jì)史教學(xué)課件第八章近代農(nóng)業(yè)經(jīng)濟(jì)的發(fā)展
- 2024年?yáng)|南亞生化需氧量(BOD)分析儀市場(chǎng)深度研究及預(yù)測(cè)報(bào)告
評(píng)論
0/150
提交評(píng)論