版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1兩圓和相外切,且,則的最大值為( )AB9CD12已知點(diǎn)是雙曲線(xiàn)上一點(diǎn),若點(diǎn)到雙曲線(xiàn)的兩條漸近線(xiàn)的距離之積為,則雙曲線(xiàn)的離心率為( )ABCD23設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),且在區(qū)間上是單調(diào)函數(shù),則( )ABCD4已知集合,則( )ABCD5已知是等差數(shù)列的前項(xiàng)和,則( )A85BC35D6一個(gè)圓錐的底面和一個(gè)半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個(gè)圓錐軸截面底角的大小是( )ABCD7記為等差數(shù)列的前項(xiàng)和.若,則( )A5B3C12D13
3、8若直線(xiàn)l不平行于平面,且l,則( )A內(nèi)所有直線(xiàn)與l異面B內(nèi)只存在有限條直線(xiàn)與l共面C內(nèi)存在唯一的直線(xiàn)與l平行D內(nèi)存在無(wú)數(shù)條直線(xiàn)與l相交9已知集合,則的真子集個(gè)數(shù)為( )A1個(gè)B2個(gè)C3個(gè)D4個(gè)10的展開(kāi)式中,含項(xiàng)的系數(shù)為( )ABCD11港珠澳大橋于2018年10月2刻日正式通車(chē),它是中國(guó)境內(nèi)一座連接香港、珠海和澳門(mén)的橋隧工程,橋隧全長(zhǎng)55千米橋面為雙向六車(chē)道高速公路,大橋通行限速100km/h,現(xiàn)對(duì)大橋某路段上1000輛汽車(chē)的行駛速度進(jìn)行抽樣調(diào)查畫(huà)出頻率分布直方圖(如圖),根據(jù)直方圖估計(jì)在此路段上汽車(chē)行駛速度在區(qū)間85,90)的車(chē)輛數(shù)和行駛速度超過(guò)90km/h的頻率分別為()A300,B
4、300,C60,D60,12設(shè)集合,若集合中有且僅有2個(gè)元素,則實(shí)數(shù)的取值范圍為ABCD二、填空題:本題共4小題,每小題5分,共20分。13若存在實(shí)數(shù)使得不等式在某區(qū)間上恒成立,則稱(chēng)與為該區(qū)間上的一對(duì)“分離函數(shù)”,下列各組函數(shù)中是對(duì)應(yīng)區(qū)間上的“分離函數(shù)”的有_.(填上所有正確答案的序號(hào)),;,;,;,.14已知二項(xiàng)式ax-1x6的展開(kāi)式中的常數(shù)項(xiàng)為-160,則a=_15平面向量,(R),且與的夾角等于與的夾角,則 .16若復(fù)數(shù)(是虛數(shù)單位),則_三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知函數(shù)f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對(duì)
5、任意,都有恒成立,求實(shí)數(shù)a的取值范圍;(3)證明:對(duì)一切,都有成立18(12分)已知在中,內(nèi)角所對(duì)的邊分別為,若,且.(1)求的值;(2)求的面積.19(12分)如圖,四棱錐中,平面,.()證明:;()若是中點(diǎn),與平面所成的角的正弦值為,求的長(zhǎng).20(12分)橢圓的右焦點(diǎn),過(guò)點(diǎn)且與軸垂直的直線(xiàn)被橢圓截得的弦長(zhǎng)為.(1)求橢圓的方程;(2)過(guò)點(diǎn)且斜率不為0的直線(xiàn)與橢圓交于,兩點(diǎn).為坐標(biāo)原點(diǎn),為橢圓的右頂點(diǎn),求四邊形面積的最大值.21(12分)如圖,四棱錐中,四邊形是矩形,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面平面;(2)求二面角的余弦值.22(10分)已知橢圓的右焦點(diǎn)為,過(guò)點(diǎn)
6、且斜率為的直線(xiàn)與橢圓交于兩點(diǎn),線(xiàn)段的中點(diǎn)為為坐標(biāo)原點(diǎn).(1)證明:點(diǎn)在軸的右側(cè);(2)設(shè)線(xiàn)段的垂直平分線(xiàn)與軸、軸分別相交于點(diǎn).若與的面積相等,求直線(xiàn)的斜率參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因?yàn)閮蓤A和相外切所以,即當(dāng)時(shí),取最大值故選:A【點(diǎn)睛】本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.2A【解析】設(shè)點(diǎn)的坐標(biāo)為,代入橢圓方程可得,然后分別求出點(diǎn)到兩條漸近線(xiàn)的距離,由距離之積為,并結(jié)合,可得到的齊次方程,進(jìn)而可求出離心率的值.【詳解】設(shè)點(diǎn)的坐
7、標(biāo)為,有,得.雙曲線(xiàn)的兩條漸近線(xiàn)方程為和,則點(diǎn)到雙曲線(xiàn)的兩條漸近線(xiàn)的距離之積為,所以,則,即,故,即,所以.故選:A.【點(diǎn)睛】本題考查雙曲線(xiàn)的離心率,構(gòu)造的齊次方程是解決本題的關(guān)鍵,屬于中檔題.3D【解析】根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對(duì)稱(chēng)軸及單調(diào)性即可確定的值,進(jìn)而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線(xiàn)對(duì)稱(chēng)可得,即,由函數(shù)的單調(diào)區(qū)間知,即,綜上,則,.故選:D【點(diǎn)睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對(duì)稱(chēng)軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.4C【解析】由題意和交集的運(yùn)算直接求出.【詳解】 集合,.故選:C.【點(diǎn)睛】本題考查
8、了集合的交集運(yùn)算.集合進(jìn)行交并補(bǔ)運(yùn)算時(shí),常借助數(shù)軸求解.注意端點(diǎn)處是實(shí)心圓還是空心圓.5B【解析】將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設(shè)公差為,則,所以,.故選:B【點(diǎn)睛】本小題主要考查等差數(shù)列通項(xiàng)公式的基本量計(jì)算,考查等差數(shù)列前項(xiàng)和的計(jì)算,屬于基礎(chǔ)題.6D【解析】設(shè)圓錐的母線(xiàn)長(zhǎng)為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線(xiàn)長(zhǎng)為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點(diǎn)睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.7B【解析】由題得,解得,計(jì)算可得.【詳解】,解得,.故
9、選:B【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,前項(xiàng)和公式,考查了學(xué)生運(yùn)算求解能力.8D【解析】通過(guò)條件判斷直線(xiàn)l與平面相交,于是可以判斷ABCD的正誤.【詳解】根據(jù)直線(xiàn)l不平行于平面,且l可知直線(xiàn)l與平面相交,于是ABC錯(cuò)誤,故選D.【點(diǎn)睛】本題主要考查直線(xiàn)與平面的位置關(guān)系,直線(xiàn)與直線(xiàn)的位置關(guān)系,難度不大.9C【解析】求出的元素,再確定其真子集個(gè)數(shù)【詳解】由,解得或,中有兩個(gè)元素,因此它的真子集有3個(gè)故選:C.【點(diǎn)睛】本題考查集合的子集個(gè)數(shù)問(wèn)題,解題時(shí)可先確定交集中集合的元素個(gè)數(shù),解題關(guān)鍵是對(duì)集合元素的認(rèn)識(shí),本題中集合都是曲線(xiàn)上的點(diǎn)集10B【解析】在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令的冪指數(shù)等于,求
10、出的值,即可求得含項(xiàng)的系數(shù)【詳解】的展開(kāi)式通項(xiàng)為,令,得,可得含項(xiàng)的系數(shù)為.故選:B.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題11B【解析】由頻率分布直方圖求出在此路段上汽車(chē)行駛速度在區(qū)間的頻率即可得到車(chē)輛數(shù),同時(shí)利用頻率分布直方圖能求行駛速度超過(guò)的頻率【詳解】由頻率分布直方圖得:在此路段上汽車(chē)行駛速度在區(qū)間的頻率為,在此路段上汽車(chē)行駛速度在區(qū)間的車(chē)輛數(shù)為:,行駛速度超過(guò)的頻率為:故選:B【點(diǎn)睛】本題考查頻數(shù)、頻率的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題12B【解析】由題意知且,結(jié)合數(shù)軸即可求得的取值范圍.【詳解】由
11、題意知,則,故,又,則,所以,所以本題答案為B.【點(diǎn)睛】本題主要考查了集合的關(guān)系及運(yùn)算,以及借助數(shù)軸解決有關(guān)問(wèn)題,其中確定中的元素是解題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由題意可知,若要存在使得成立,我們可考慮兩函數(shù)是否存在公切點(diǎn),若兩函數(shù)在公切點(diǎn)對(duì)應(yīng)的位置一個(gè)單增,另一個(gè)單減,則很容易判斷,對(duì),都可以采用此法判斷,對(duì)分析式子特點(diǎn)可知,進(jìn)而判斷【詳解】時(shí),令,則,單調(diào)遞增, ,即.令,則,單調(diào)遞減,即,因此,滿(mǎn)足題意.時(shí),易知,滿(mǎn)足題意.注意到,因此如果存在直線(xiàn),只有可能是(或)在處的切線(xiàn),因此切線(xiàn)為,易知,因此不存在直線(xiàn)滿(mǎn)足題意.時(shí),注意到,因此
12、如果存在直線(xiàn),只有可能是(或)在處的切線(xiàn),因此切線(xiàn)為.令,則,易知在上單調(diào)遞增,在上單調(diào)遞減,所以,即.令,則,易知在上單調(diào)遞減,在上單調(diào)遞增,所以,即.因此,滿(mǎn)足題意.故答案為:【點(diǎn)睛】本題考查新定義題型、利用導(dǎo)數(shù)研究函數(shù)圖像,轉(zhuǎn)化與化歸思想,屬于中檔題142【解析】在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng),再根據(jù)常數(shù)項(xiàng)等于-160求得實(shí)數(shù)a的值【詳解】二項(xiàng)式(ax-1x)6的展開(kāi)式中的通項(xiàng)公式為T(mén)r+1=C6r(-1)ra6-rx6-2r,令6-2r=0,求得r=3,可得常數(shù)項(xiàng)為-C63a3=-160,a=2,故答案為:2【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用
13、,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題152【解析】試題分析:,與的夾角等于與的夾角,所以考點(diǎn):向量的坐標(biāo)運(yùn)算與向量夾角16【解析】直接根據(jù)復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則計(jì)算即可【詳解】,【點(diǎn)睛】本題主要考查復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則的應(yīng)用三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17 (1) (2)( (3)見(jiàn)證明【解析】(1)先求函數(shù)導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號(hào)變化規(guī)律確定函數(shù)單調(diào)性,最后根據(jù)函數(shù)單調(diào)性確定最小值取法;(2)先分離不等式,轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問(wèn)題,利用導(dǎo)數(shù)求對(duì)應(yīng)函數(shù)最值即得結(jié)果;(3)構(gòu)造兩個(gè)函數(shù),再利用兩函數(shù)最值關(guān)系進(jìn)行證明.【詳解
14、】(1)當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,所以函數(shù)f(x)的最小值為f()=;(2)因?yàn)樗詥?wèn)題等價(jià)于在上恒成立,記則,因?yàn)?,令函?shù)f(x)在(0,1)上單調(diào)遞減;函數(shù)f(x)在(1,+)上單調(diào)遞增;即,即實(shí)數(shù)a的取值范圍為(.(3)問(wèn)題等價(jià)于證明由(1)知道 ,令函數(shù)在(0,1)上單調(diào)遞增;函數(shù)在(1,+)上單調(diào)遞減;所以,因此,因?yàn)閮蓚€(gè)等號(hào)不能同時(shí)取得,所以即對(duì)一切,都有成立.【點(diǎn)睛】對(duì)于求不等式成立時(shí)的參數(shù)范圍問(wèn)題,在可能的情況下把參數(shù)分離出來(lái),使不等式一端是含有參數(shù)的不等式,另一端是一個(gè)區(qū)間上具體的函數(shù),這樣就把問(wèn)題轉(zhuǎn)化為一端是函數(shù),另一端是參數(shù)的不等式,便于問(wèn)題的解決.但要注意分離參數(shù)
15、法不是萬(wàn)能的,如果分離參數(shù)后,得出的函數(shù)解析式較為復(fù)雜,性質(zhì)很難研究,就不要使用分離參數(shù)法.18(1);(2)【解析】(1)將代入等式,結(jié)合正弦定理將邊化為角,再將及代入,即可求得的值;(2)根據(jù)(1)中的值可求得和,進(jìn)而可得,由三角形面積公式即可求解.【詳解】(1)由,得,由正弦定理將邊化為角可得,化簡(jiǎn)可得,解得.(2)在中,.【點(diǎn)睛】本題考查了正弦定理在邊角轉(zhuǎn)化中的應(yīng)用,正弦差角公式的應(yīng)用,三角形面積公式求法,屬于基礎(chǔ)題.19()見(jiàn)解析;()【解析】()取的中點(diǎn),連接,由,得三點(diǎn)共線(xiàn),且,又,再利用線(xiàn)面垂直的判定定理證明.()設(shè),則,在底面中,在中,由余弦定理得:,在中,由余弦定理得,兩式
16、相加求得,再過(guò)作,則平面,即點(diǎn)到平面的距離,由是中點(diǎn),得到到平面的距離,然后根據(jù)與平面所成的角的正弦值為求解.【詳解】()取的中點(diǎn),連接,由,得三點(diǎn)共線(xiàn),且,又,所以平面,所以.()設(shè),在底面中,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以 ,過(guò)作,則平面,即點(diǎn)到平面的距離,因?yàn)槭侵悬c(diǎn),所以為到平面的距離,因?yàn)榕c平面所成的角的正弦值為,即,解得.【點(diǎn)睛】本題主要考查線(xiàn)面垂直的判定定理,線(xiàn)面角的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象運(yùn)算求解的能力,屬于中檔題.20(1)(2)最大值.【解析】(1)根據(jù)通徑和即可求(2)設(shè)直線(xiàn)方程為,聯(lián)立橢圓,利用,用含的式子表示出,用換元,可得,
17、最后用均值不等式求解.【詳解】解:(1)依題意有,所以橢圓的方程為.(2)設(shè)直線(xiàn)的方程為,聯(lián)立,得.所以,.所以.令,則,所以,因,則,所以,當(dāng)且僅當(dāng),即時(shí)取得等號(hào),即四邊形面積的最大值.【點(diǎn)睛】考查橢圓方程的求法和橢圓中四邊形面積最大值的求法,是難題.21(1)見(jiàn)解析;(2)【解析】(1)取中點(diǎn),中點(diǎn),連接,.設(shè)交于,則為的中點(diǎn),連接.通過(guò)證明,證得平面,由此證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)取中點(diǎn),中點(diǎn),連接,.設(shè)交于,則為的中點(diǎn),連接.設(shè),則,.由已知,平面,.,平面,平面,平面平面.(2)由(1)及已知可得平面,建立如圖所示的空間坐標(biāo)系,設(shè),則,設(shè)平面的法向量為,令得.設(shè)平面的法向量為,令得,二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.22(1)證明見(jiàn)解析(2)【解析】(1)設(shè)出直線(xiàn)的方程,與橢圓方程
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年小鱗片式鏈條爐排項(xiàng)目可行性研究報(bào)告
- 2024專(zhuān)利權(quán)轉(zhuǎn)讓的合同范本
- 2024裝修承包合同書(shū)范本
- 2024微信小程序開(kāi)發(fā)服務(wù)合同
- 2024《采礦權(quán)出讓合同》
- 課程設(shè)計(jì)在哪個(gè)網(wǎng)站找
- 配油盤(pán)課程設(shè)計(jì)熱赤露
- 煉鐵過(guò)程中的濕法除塵技術(shù)研究考核試卷
- 旅游景區(qū)安全管理講座考核試卷
- 2024年白糖物流責(zé)任與義務(wù)協(xié)議樣本版
- 淺談落實(shí)新課程理念下小學(xué)語(yǔ)文作業(yè)設(shè)計(jì)與實(shí)踐
- 國(guó)六柴油標(biāo)準(zhǔn)
- 優(yōu)化農(nóng)村少先隊(duì)活動(dòng)促進(jìn)少先隊(duì)員健康成長(zhǎng) 論文
- 武術(shù)《南拳》教案
- 沂蒙紅色文化與沂蒙精神智慧樹(shù)知到答案章節(jié)測(cè)試2023年臨沂大學(xué)
- 初中數(shù)學(xué) 二倍角問(wèn)題專(zhuān)項(xiàng)教案
- RFJ05-2009-DQ人民防空工程電氣大樣圖集
- 電子負(fù)載使用說(shuō)明書(shū)
- 高效能人士的執(zhí)行4原則
- 油漆安全技術(shù)說(shuō)明書(shū)MSDS
- 醫(yī)療機(jī)構(gòu)消毒技術(shù)規(guī)范(2023年版)
評(píng)論
0/150
提交評(píng)論