版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、國(guó)際經(jīng)濟(jì)貿(mào)易學(xué)院研究生課程班固定收益證券試題1 )Explainwhyyouagreeordisagreewiththefollowingstatement:“Thepriceofafloaterwillalwaystradeatitsparvalue.”Answer:Idisagreewiththestatement:“Thepriceofafloaterwillalwaystradeatitsparvalue.”First,thecouponrateofafloating-ratesecurity(orfloater)isequaltoareferencerateplussomesprea
2、dormargin.Forexample,thecouponrateofafloatercanresetattherateonathree-monthTreasurybill(thereferencerate)plus50basispoints(thespread).Next,thepriceofafloaterdependsontwofactors:(1)thespreadoverthereferencerateand(2)anyrestrictionsthatmaybeimposedontheresettingofthecouponrate.Forexample,afloatermayha
3、veamaximumcouponratecalledacaporaminimumcouponratecalledafloor.Thepriceofafloaterwilltradeclosetoitsparvalueaslongas(1)thespreadabovethereferenceratethatthemarketrequiresisunchangedand(2)neitherthecapnorthefloorisreached.However,ifthemarketrequiresalarger(smaller)spread,thepriceofafloaterwilltradebe
4、low(above)par.Ifthecouponrateisrestrictedfromchangingtothereferencerateplusthespreadbecauseofthecap,thenthepriceofafloaterwilltradebelowpar.2 )Aportfoliomanagerisconsideringbuyingtwobonds.BondAmaturesinthreeyearsandhasacouponrateof10%payablesemiannually.BondB,ofthesamecreditquality,maturesin10yearsa
5、ndhasacouponrateof12%payablesemiannually.Bothbondsarepricedatpar.(a) Supposethattheportfoliomanagerplanstoholdthebondthatispurchasedforthreeyears.Whichwouldbethebestbondfortheportfoliomanagertopurchase?Answer:Theshortertermbondwillpayalowercouponratebutitwilllikelycostlessforagivenmarketrate.Sinceth
6、ebondsareofequalriskintermsofcreitquality(Thematuritypremiumforthelongertermbondshouldbegreater),thequestionwhencomparingthetwobondinvestmentsis:Whatinvestmentwillbeexpectetogivethehighestcashflowperdollarinvested?Inotherwords,whichinvestmentwillbeexpectedtogivethehighesteffectiveannualrateofreturn.
7、Ingeneral,holdingthelongertermbondshouldcompensatetheinvestorintheformofamaturitypremiumandahigherexpectedreturn.However,asseeninthediscussionbelow,theactualrealizedreturnforeitherinvestmentisnotknownwithcertainty.Tobeginwith,aninvestorwhopurchasesabondcanexpecttoreceiveadollarreturnfrom(i)theperiod
8、iccouponinterestpaymentsmadebetheissuer,(ii)ancapitalgainwhenthebondmatures,iscalled,orissold;and(iii)interestincomegeneratedfromreinvestmentoftheperiodiccashflows.Thelastcomponentofthepotentialdollarreturnisreferredtoasreinvestmentincome.Forastandardbond(oursituation)thatmakesonlycouponpaymentsandn
9、operiodicprincipalpaymentspriortothematuritydate,theinterimcashflowsaresimplythecouponpayments.Consequently,forsuchbondsthereinvestmentincomeissimplyinterestearnedfromreinvestingthecouponinterestpayments.Forthesebonds,thethirdcomponentofthepotentialsourceofdollarreturnisreferredtoastheinterest-on-in
10、terestcomponents.Ifwearegoingtocouputeapotentialyieldtomakeadecision,weshouldbeawareofthefactthatanymeasureofabondspotentialyieldshouldtakeintoconsiderationeachofthethreecomponentsdescribedabove.Thecurrentyieldconsidersonlythecouponinterestpayments.Noconsiderationisgiventoanycapitalgainorinterestoni
11、nterest.Theyieldtomaturitytakesintoaccountcouponinterestandanycapitalgain.Italsoconsiderstheinterest-on-interestcomponent.Additionally,implicitintheyield-to-maturitycomputationistheassumptionthatthecouponpaymentscanbereinvestedatthecomputedyieldtomaturity.Theyieldtomaturityisapromisedyieldandwillber
12、ealizedonlyifthebondisheldtomaturityandthecouponinterestpaymentsarereinvestedattheyieldtomaturity.Ifthebondisnotheldtomaturityandthecouponpaymentsarereinvestedattheyieldtomaturity,thentheactualyieldrealizedbyaninvestorcanbegreaterthanorlessthantheyieldtomaturity.Giventhefactsthat(i)onebond,ifbought,
13、willnotbeheldtomaturity,and(ii)thecouponinterestpaymentswillbereinvestedatanunknownrate,wecannotdeterminewhichbondmightgivethehighestactualrealizedrate.Thus,wecannotcomparethembaseduponthiscriterion.However,iftheportfoliomanagerisriskinverseinthesensethatsheorhedoesntwanttobuyalongertermbond,whichwi
14、lllikelhavemorevariabilityinitsreturn,thenthemanagermightprefertheshortertermbond(bondA)ofthresyears.Thisbondalsomatureswhenthemanagerwantstocashinthebond.Thus,themanagerwouldnothavetoworryaboutanypotentialcapitallossinsellingthelongertermbond(bondB).Themanagerwouldknowwithcertaintywhatthecashflowsa
15、re.IfThesecashflowsarespentwhenreceived,themanagerwouldknowexactlyhowmuchmoneycouldbespentatcertainpointsintime.Finally,amanagercantrytoprojectthetotalreturnperformanceofabondonthebasisofthepannedinvestmenthorizonandexpectationsconcerningreinvestmentratesandfuturemarketyields.Thisermitstheportfoliom
16、anagertoevaluatethichofseveralpotentialbondsconsideredforacquisitionwillperformbestovertheplannedinvestmenthorizon.Aswejustrgued,thiscannotbedoneusingtheyieldtomaturityasameasureofrelativevalue.Usingtotalreturntoassessperformanceoversomeinvestmenthorizoniscalledhorizonanalysis.Whenatotalreturniscalc
17、ulatedovenaninvestmenthorizon,itisreferredtoasahorizonreturn.Thehorizonanalysisframworenabledtheportfoliomanagertoanalyzetheperformanceofabondunderdifferentinterest-ratescenariosforreinvestmentratesandfuturemarketyields.Onlybyinvestigatingmultiplescenarioscantheportfoliomanagerseehowsensitivethebond
18、sperformancewillbetoeachscenario.Thiscanhelpthemanagerchoosebetweenthetwobondchoices.(b) Supposethattheportfoliomanagerplanstoholdthebondthatispurchasedforsixyearsinsteadofthreeyears.Inthiscase,whichwouldbethebestbondfortheportfoliomanagertopurchase?Answer:Simileartoourdiscussioninpart(a),wedonotkno
19、wwhichinvestmentwouldgivethehighestactualrelizedreturninsixyearswhenweconsiderreinvestingallcashflows.Ifthemanagerbuysathree-yearbond,thentherewouldbetheadditionaluncertaintyofnowknowingwhatthree-yearbondrateswouldbeinthreeyears.Thepurchaseoftheten-yearbondwouldbeheldlongerthanpreviously(sixyearscom
20、paredtothreeyears)andrendercouponpaymentsforasix-yearperiodthatareknown.Ifthesecashflowsarespentwhenreceived,themanagerwillknowexactlyhowmuchmoneycouldbespentatcertainpointsintimeNotknowingwhichbondinvestmentwouldgivethehighestrealizedreturn,theportfoliomanagerwouldchoosethebondthatfitsthefirmsgoals
21、intermsofmaturity.3 )AnswerthebelowquestionsforbondsAandB.BondABondBCoupon8%9%Yieldto8%8%maturityMaturity25(years)Par$100.00$100.00Price$100.00$104.055(a) Calculatetheactualpriceofthebondsfora100-basis-pointincreaseininterestrates.Answer:ForBondA,wegetabondquoteof$100forourinitialpriceifwehavean8%co
22、uponrateandan8%yield.Ifwechangetheyield100basispointsotheyieldis9%,thenthevalueofthebond(P)isthepresentvalueofthecouponpaymentsplusthepresentvalueoftheparvalue.WehaveC=$40,y=4.5%,n=4,andM=$1,000.Insertingthesenumbersintoourpresentvalueofcouponbondformula,weget:Thepresentvalueoftheparormaturityvalueo
23、f$1,000is:Thus,thevalueofbondAwithayieldof9%,acouponrateof8%,andamaturityof2yearsis:P=$143.501+$838.561=$982.062.Thus,wegetabondquoteof$98.2062.WealreadyknowthatbondBwillgiveabondvalueof$1,000andabondquoteof$100sinceachangeof100basispointswillmaketheyieldandcouponratethesame,Forexample,insertingThus
24、,thevalueofbondAwithayieldof9%,acouponrateof8%,andamaturityof2yearsis:P=$143.501+$838.561=$982.062.Thus,wegetabondquoteof$98.2062.WealreadyknowthatbondBwillgiveabondvalueof$1,000andabondquoteof$100sinceachangeof100basispointswillmaketheyieldandcouponratethesame,Forexample,inserting(b) Usingduration,
25、estimatethepriceofthebondsfora100-basis-pointincreaseininterestrates.Answer:ToestimatethepriceofbondA,webeginbyfirstcomputingthemodifiedduration.WecanuseanalternativeformulathatdoesnotrequiretheextensivecalculationsrequiredbytheMacaulayprocedure.Theformulais:Puttingallapplicablevariablesintermsof$10
26、0,wehaveC=$4,n=4,y=0.045,andP=$98.2062.Insertingthesevalues,inthemodifieddurationformulagives:($1,975.3086420.161439+$35.664491)/$98.2062=($318.89117+$35.664491)/$98.2062=$354.555664/$98.2062=3.6103185orabout3.61.Convertingtoannualnumberbydividingbytwogivesamodifieddurationof1.805159(beforetheincrea
27、sein100basispointsitwas1.814948).Wenextsolveforthechangeinpriceusingthemodifieddurationof1.805159anddy=100basispoints=0.01.Wehave:WecannowsolveforthenewpriceofbondAasshownbelow:Thisisslightlylessthantheactualpriceof$982.062.Thedifferenceis$982.062-$981.948=$0.114.ToestimatethepriceofbondB,wefollowth
28、esameprocedurejustshownforbondA.UsingthealternativeformulaformodifieddurationthatdoesnotrequiretheextensivecalculationsrequiredbytheMacaulayprocedureandnotingthatC=$45,n=10,y=0.045,andP=$100,weget:($791.27182+$0)/$100=7.912718orabout7.91(beforetheincreasein100basispointsitwas7.988834orabout7.99).Con
29、vertingtoanannualnumberbydividingbytwogivesamodifieddurationof3.956359(beforetheincreasein100basispointsitwas3.994417).WewillnowestimatethepriceofbondBusingthemodifieddurationmeasure.With100basispointsgivingdy=0.01andanapproximatedurationof3.956359,wehave:Thus,thenewpriceis(1-0.0395635)$1,040.55=(0.
30、9604364)$1,040.55=$999.382.Thisisslightlylessthantheactualpriceof$1,000.Thedifferenceis$1,000-$999.382=$0.618.(c) Usingbothdurationandconvexitymeasures,estimatethepriceofthebondsfora100-basis-pointincreaseininterestrates.Answer:ForbondA,weusethedurationandconvexitymeasuresasgivenbelow.First,weusethe
31、durationmeasure.Weadd100basispointsandgetayieldof9%.WenowhaveC=$40,y=4.5%,n=4,andM=$1,000.NOTE.Inpart(a)wecomputedtheactualbondpriceandgotP=$982.062.Priortothat,thepricesoldatpar(P=$1,000)sincethecouponrateandyieldwerethenequal.Theactualchangeinpriceis:($982.062-$1,000)=$17.938andtheactualpercentage
32、changeinpriceis:$17.938/$1,000=0.017938%.Wewillnowestimatethepricebyfirstapproximatingthedollarpricechange.With100basispointsgivingdy=0.01andamodifieddurationcomputedinpart(b)of1.805159,wehave:Thisisslightlymorenegativethantheactualpercentagedecreaseinpriceof1.7938%.Thedifferenceis1.7938%-(1.805159%
33、)=1.7938%+1.805159%=0.011359%.Usingthe1.805159%justgivenbythedurationmeasure,thenewpriceforbondAis:Thisisslightlylessthantheactualpriceof$982.062.Thedifferenceis$982.062一$981.948=$0.114.Next,weusetheconvexitymeasuretoseeifwecanaccountforthedifferenceof0.011359%.Wehave:convexitymeasure(halfyears)2_d2
34、P12Cd12Cnn(n1)(100C/y)1-1dy2Py3(1y)ny2(1y)(1y)n2PForbondA,weadd100basispointsandgetayieldof9%.WenowhaveC=$40,y=4.5%,n=4,andM=$1,000.NOTE.Inpart(a)wecomputedtheactualbondpriceandgotP=$982.062.Priortothat,thepricesoldatpar(P=$1,000)sincethecouponrateandyieldwerethenequal.Expressingnumbersintermsofa$10
35、0bondquote,wehave:C=$4,y=0.045,n=4,andP=$98.2062.Insertingthesenumbersintoourconvexitymeasureformulagives:convexitymeasure(halfyears)=2$4 /13 140.0453(1.045,16.93252($4)44(5)(100$4/y0.045)10.0452(1.045;5(1.045)6$98.2062Addingthedurationmeasureandtheconvexitymeasure,weget1.805159%+$17.938 / $1,000 =0
36、.021166%=1.783994%.Recalltheactualchangeinpriceis:($982.062-$1,000)$17.938andtheactualpercentagechangeinpriceis:-0.017938orapproximately1.7938%.Usingthe1.783994%resultingfromboththedurationandconvexitymeasures,wecanestimatethenewpriceforbondA.Wehave:Addingthedurationmeasureandtheconvexitymeasure,weg
37、et1.805159%+0.021166%=1.783994%.Recalltheactualchangeinpriceis:($982.062-$1,000)=$17.938andtheactualpercentagechangeinpriceis:$17.938/$1,000=-0.017938orapproximately1.7938%.Usingthe1.783994%resultingfromboththedurationandconvexitymeasures,wecanestimatethenewpriceforbondA.Wehave:Thisisslightlymoreneg
38、ativethantheactualpercentagedecreaseinpriceof-3.896978%.Thedifferenceis(-3.896978%)-(-3.95635%)=0.059382%Usingthe-3.95635%justgivenbythedurationmeasure,thenewpriceforBondBis:Thisisslightlylessthantheactualpriceof$1,000.Thisdifferenceis$1,000-$999.382=$0.618Weusetheconvexitymeasuretoseeifwecanaccount
39、forthedifferenceof00594%.Wehave:ForBondB,100basispointsareaddedandgetayieldof9%.WenowhaveC=$45,y=4.5%,n=10,andM=$1,000.Noteinpart(a),wecomputedtheactualbondpriceandgotP=$1,000sincethecouponrateandyieldwerethenequal.Priortothat,thepricesoldatP=$1,040.55.Expressingnumbersintermsofa$100bondquote,wehave
40、C=$4.5,y-0.045,n=10andP=$100.Insertingthesenumbersintoourconvexitymeasureformulagives:Theconvexitymeasure(inyears)=Note.DollarConvexityMeasure=ConvexityMeasure(years)timesP=dP gconvexitymeasure(dy)219.452564($100)=$1,945.2564.ThepercentagepricechangeduetoconvexityisdP1oInsertinginthevalues,weget(77.
41、8103)(0.01)20.00097463P2Thus,wehave0.097463%increaseinpricewhenweadjustforconvexitymeasure.Addingthedurationmeasureandconvexitymeasure,weget-3.9563659%+0.097263%equals-3.859096%.Recalltheactualchangeinpriceis($1,000-$1,040.55)=-$40.55andtheactualnewpriceisForBondA.Thisisaboutthesameastheactualpriceo
42、f$1,000.Thedifferenceis$1,000.394-$1,000=$0.394.Thus,usingtheconvexitymeasurealongwiththedurationmeasurehasnarrowedtheestimatedpricefromadifferenceof-$0.618to$0.394.(d) Commentontheaccuracyofyourresultsinpartsbandc,andstatewhyoneapproximationisclosertotheactualpricethantheother.Answer:ForbondA,theac
43、tualpriceis$982.062.Whenweusethedurationmeasure,wegetabondpriceof$981.948thatis$0.114lessthantheactualprice.Whenweusedurationandconvexmeasurestogether,wegetabondpriceof$982.160.Thisisslightlymorethantheactualpriceof$982.062.Thedifferenceis$982.160-$982.062=$0.098.Thus,usingtheconvexitymeasurealongwi
44、ththedurationmeasurehasnarrowedtheestimatedpricefromadifferenceof$0.114to$0.0981.ForbondB,theactualpriceis$1,000.Whenweusethedurationmeasure,wegetabondpriceof$999.382thatis$0.618lessthantheactualprice.Whenweusedurationandconvexmeasurestogether,wegetabondpriceof$1,000.394.Thisisslightlymorethantheact
45、ualpriceof$1,000.Thedifferenceis$1,000.394-$1,000=$0.394.Thus,usingtheconvexitymeasurealongwiththedurationmeasurehasnarrowedtheestimatedpricefromadifferenceof-$0.618to$0.394Aswesee,usingthedurationandconvexitymeasurestogetherismoreaccurate.Thereasonisthataddingtheconvexitymeasuretoourestimateenables
46、ustoincludethesecondderivativethatcorrectsfortheconvexityoftheprice-yieldrelationship.Moredetailsareofferedbelow.Duration(modifiedordollar)attemptstoestimateaconvexrelationshipwithastraightline(thetangentline).Wecanspecifyamathematicalrelationshipthatprovidesabetterapproximationtothepricechangeofthe
47、bondiftherequiredyieldchanges.WedothisbyusingthefirsttwotermsofaTaylorseriestoapproximatethepricechangeasfollows:DividingbothsidesofthisequationbyPtogetthepercentagepricechangegivesus:Thefirsttermontheright-handsideofequation(1)isequationforthedollarpricechangebasedondollardurationandisourapproximat
48、ionofthepricechangebasedonduration.Inequation(2),thefirsttermontheright-handsideistheapproximatepercentagechangeinpricebasedonmodifiedduration.Thesecondterminequations(1)and(2)includesthesecondderivativeofthepricefunctionforcomputingthevalueofabond.Itisthesecondderivativethatisusedasaproxymeasuretoc
49、orrectfortheconvexityoftheprice-yieldrelationship.Marketparticipantsrefertothesecondderivativeofbondpricefunctionasthedollarconvexitymeasureofthebond.Thesecondderivativedividedbypriceisameasureofthepercentagechangeinthepriceofthebondduetoconvexityandisreferredtosimplyastheconvexitymeasure.(e) Withou
50、tworkingthroughcalculations,indicatewhetherthedurationofthetwobondswouldbehigherorloweriftheyieldtomaturityis10%ratherthan8%.Answer:Liketermtomaturityandcouponrate,theyieldtomaturityisafactorthatinfluencespricevolatility.Ceterisparibus,thehighertheyieldlevel,thelowerthepricevolatility.Thesamepropert
51、yholdsformodifiedduration.Thus,a10%yieldtomaturitywillhavebothlessvolatilitythanan8%yieldtomaturityandalsoasmallerduration.Thereisconsistencybetweenthepropertiesofbondpricevolatilityandthepropertiesofmodifiedduration.Whenallotherfactorsareconstant,abondwithalongermaturitywillhavegreaterpricevolatili
52、ty.Apropertyofmodifieddurationisthatwhenallotherfactorsareconstant,abondwithalongermaturitywillhaveagreatermodifiedduration.Also,allotherfactorsbeingconstant,abondwithalowercouponratewillhavegreaterbondpricevolatility.Also,generally,abondwithalowercouponratewillhaveagreatermodifiedduration.Thus,bond
53、swithgreaterdurationswillgreaterpricevolatilities.4) Supposeaclientobservesthefollowingtwobenchmarkspreadsfortwobonds:BondissueUratedA:150basispointsBondissueVratedBBB:135basispointsYourclientisconfusedbecausehethoughtthelower-ratedbond(bondV)shouldofferahigherbenchmarkspreadthanthehigher-ratedbond(
54、bondU).ExplainwhythebenchmarkspreadmaybelowerforbondU.5) ThebidandaskyieldsforaTreasurybillwerequotedbyadealeras5.91%and5.89%,respectively.Shouldntthebidyieldbelessthantheaskyield,becausethebidyieldindicateshowmuchthedealeriswillingtopayandtheaskyieldiswhatthedealeriswillingtoselltheTreasurybillfor?
55、Answer:Thehigherbidmeansalowerprice.Sothedealeriswillingtopaylessthanwouldbepaidfortheloweraskprice.Weillustratethisbelow.Giventheyieldonabankdiscountbasis(Yd),thepriceofaTreasurybillisfoundbyfirstsolvingtheformulaforthedollardiscount(D),asfollows:ThepriceisthenPrice=F-DForthe100-dayTreasurybillwith
56、afacevalue(F)of$100,000,iftheyieldonabankdiscountbasis(Yd)isquotedas5.91%,Disequalto:Therefore,price=$100,000-$1,641.67=$98,358.33.Forthe100-dayTreasurybillwithafacevalue(F)of$100,000,iftheyieldonabankdiscountbasis(Yd)isquotedas5.89%,Disequalto:Therefore,priceis:P=F-D=$100,000-$1,636.11=$98,363.89.T
57、hus,thehigherbidquoteof5.91%(comparedtoloweraskquote5.89%)givesalowersellingpriceof$98,358.33(comparedto$98,363.89).The0.02%higheryieldtranslatesintoasellingpricethatis$5.56lower.Ingeneral,thequotedyieldonabankdiscountbasisisnotameaningfulmeasureofthereturnfromholdingaTreasurybill,fortworeasons.Firs
58、t,themeasureisbasedonaface-valueinvestmentratherthanontheactualdollaramountinvested.Second,theyieldisannualizedaccordingtoa360-dayratherthana365-dayyear,makingitdifficulttocompareTreasurybillyieldswithTreasurynotesandbonds,whichpayinterestona365-daybasis.Theuseof360daysforayearisamoneymarketconventionforsomemoneymarketinstruments,however.Despiteitsshortcomingsasameasureofreturn,thisisthemethodthatdealershaveadoptedtoquoteTreasurybil
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度離婚案件中涉及2024年購(gòu)置車輛分割協(xié)議書3篇
- 2024年遠(yuǎn)程醫(yī)療服務(wù)系統(tǒng)搭建合同
- 2025年度裝載機(jī)租賃與售后服務(wù)合同3篇
- 2025年度智慧城市安防監(jiān)控系統(tǒng)工程合同書3篇
- 2024年物業(yè)綠化維護(hù)合同(適用于物業(yè)綠化養(yǎng)護(hù))3篇
- 求一個(gè)數(shù)比另一個(gè)數(shù)多幾(少幾)教學(xué)反思
- 高級(jí)財(cái)務(wù)會(huì)計(jì)歷年核算題(分類)
- 人民日?qǐng)?bào)青春摘抄(高中作文素材)
- 華南農(nóng)業(yè)大學(xué)珠江學(xué)院《數(shù)據(jù)庫(kù)技術(shù)基礎(chǔ)(ACCESS)》2023-2024學(xué)年第一學(xué)期期末試卷
- 培黎職業(yè)學(xué)院《Java語(yǔ)言程序設(shè)計(jì)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 體外膜肺氧合(ECMO)并發(fā)癥及護(hù)理
- 墊江縣中醫(yī)院2018年11月份臨床技能中心教學(xué)設(shè)備招標(biāo)項(xiàng)目招標(biāo)文件
- 排放源統(tǒng)計(jì)(環(huán)統(tǒng))年報(bào)填報(bào)指南
- 反射療法師理論考試復(fù)習(xí)題及答案
- 房地產(chǎn)銷售主管崗位招聘筆試題及解答(某大型國(guó)企)2025年
- 心電圖并發(fā)癥預(yù)防及處理
- 重慶市七中學(xué)2023-2024學(xué)年數(shù)學(xué)八上期末統(tǒng)考模擬試題【含解析】
- 檢驗(yàn)科lis系統(tǒng)需求
- 中東及非洲空氣制水機(jī)行業(yè)現(xiàn)狀及發(fā)展機(jī)遇分析2024-2030
- DL∕T 1631-2016 并網(wǎng)風(fēng)電場(chǎng)繼電保護(hù)配置及整定技術(shù)規(guī)范
- 煤礦立井井筒及硐室設(shè)計(jì)規(guī)范
評(píng)論
0/150
提交評(píng)論