




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、(1)(1)什么是相似三角形?相似比是什么?什么是相似三角形?相似比是什么? 對應(yīng)角相等、對應(yīng)邊成比例對應(yīng)角相等、對應(yīng)邊成比例的三角形的三角形, ,叫做叫做相似三角形相似三角形. .(2)如何判定兩個三角形相似?平行得相似;兩個角對應(yīng)相等;兩邊對應(yīng)成比例, 夾角相等;三邊對應(yīng)成比例.已知已知: ABCABC,根據(jù)相似的定,根據(jù)相似的定義,我們有哪些結(jié)論?義,我們有哪些結(jié)論?情境引入:情境引入:ACBBAC從對應(yīng)邊上看:從對應(yīng)邊上看: _從對應(yīng)角上看:從對應(yīng)角上看:_兩個三角形相似,除了兩個三角形相似,除了對應(yīng)邊成比例、對應(yīng)邊成比例、對應(yīng)角相等對應(yīng)角相等之外,我們還可以得到哪些結(jié)論?之外,我們還
2、可以得到哪些結(jié)論? 對應(yīng)邊成比例對應(yīng)角相等 如:如:ABCABC,相似比為相似比為k,AD、AD分別為分別為BC、BC邊上的邊上的高,那么高,那么AD、 AD之間有什么關(guān)系?之間有什么關(guān)系? 變化一:如果把對應(yīng)的高改為變化一:如果把對應(yīng)的高改為對應(yīng)邊上的中線對應(yīng)邊上的中線?變化二:如果把對應(yīng)的高改為變化二:如果把對應(yīng)的高改為對應(yīng)角的角平分線對應(yīng)角的角平分線?18.3.9 18.3.9 探索新知兩角對應(yīng)相等兩角對應(yīng)相等,兩三角形相似兩三角形相似?DBAABDCBBC、DAAD、kCBAABC相似嗎與邊上的高分別為其中相似比為如圖問題,:1)( ,:CBAABC因為解已知已知所以所以B=B( )相
3、似三角形的對應(yīng)角相等相似三角形的對應(yīng)角相等 .90BDAADB又.DBAABD所以( )相似三角形的性質(zhì)相似三角形的性質(zhì)18.3.9 18.3.9 探索新知?DAADDBAABDCBBC、DAAD、kCBAABC等于什么能否得到由邊上的高分別為其中相似比為如圖問題,:1所以所以(相似三角形的對應(yīng)邊成比例相似三角形的對應(yīng)邊成比例),DBAABD因為DAADBAABk相似三角形的性質(zhì)相似三角形的性質(zhì)結(jié)論:結(jié)論:相似三角形對應(yīng)相似三角形對應(yīng)高的比等于相似比高的比等于相似比. .類似結(jié)論類似結(jié)論DCBADCBAk._,DAADCBBC、DAAD、kCBAABC則邊上的中線分別為其中相似比為如圖自主思考
4、-:2問題結(jié)論:結(jié)論:相似三角形對應(yīng)相似三角形對應(yīng)中線中線的比等于相似比的比等于相似比. .ACBCBAEEk._,EBBECBAABC、EBBE、kCBAABC則的角平分線分別為其中相似比為如圖類似類似結(jié)論結(jié)論自主思考- -:3問題結(jié)論:結(jié)論:相似三角形對應(yīng)相似三角形對應(yīng)角的角的角平分線角平分線的比等于相似比的比等于相似比. .由此可得以下結(jié)論: 相似三角形對應(yīng)邊上的高的比等于 相似三角形對應(yīng)邊上的中線的比等于 相似三角形對應(yīng)角的平分線的比等于 相似比相似比相似比n1 1. .相似三角形對應(yīng)邊的比為相似三角形對應(yīng)邊的比為2323, ,那那么相似比為么相似比為_,_,對應(yīng)角的角平對應(yīng)角的角平分
5、線的比為分線的比為_._.2 32 3n2 2兩個相似三角形的相似比為兩個相似三角形的相似比為1:41:4, , 則對應(yīng)高的比為則對應(yīng)高的比為_,_,對應(yīng)角的對應(yīng)角的角平分線的比為角平分線的比為_. _. 1:41:44141n3 3兩個相似三角形對應(yīng)中線的比為兩個相似三角形對應(yīng)中線的比為 ,則相似比為則相似比為_,_,對應(yīng)高的比為對應(yīng)高的比為_ ._ .41 圖中圖中(1)(2)(3)分別是邊長為分別是邊長為1、2、3的的等邊三角形,它們都相似嗎?為什么?等邊三角形,它們都相似嗎?為什么?(2)與()與(1)的相似比)的相似比_, (2)與()與(1)的周長比)的周長比_; (2)與()與(
6、1)的面積比)的面積比_;(3)與()與(1)的相似比)的相似比_, (3)與()與(1)的周長比)的周長比_. (3)與()與(1)的面積比)的面積比_. 2:12:14:13:13:19:1猜想結(jié)論:猜想結(jié)論: 相似三角形的相似三角形的周長比周長比等于等于_ 相似三角形的相似三角形的面積比面積比 等于等于_ _ 相似比相似比的平方問題問題4 4:兩個相似三角形的兩個相似三角形的周長比周長比 會等于相似比嗎?會等于相似比嗎?已知已知ABCABC ,且相似比為,且相似比為k k。求證:求證:ABCABC、 周長的比等于周長的比等于k k CBACBAkACCACBBCBAAB證明:證明:ABC
7、ABCCBAkACCBBACABCAB即即ABCABC、 的周長比等于相似比的周長比等于相似比 CBA結(jié)論:結(jié)論:相似三角形對應(yīng)相似三角形對應(yīng)角的角的周長的比等周長的比等于相似比于相似比. .問題問題5:兩個相似三角形的兩個相似三角形的面積與面積與相似比相似比之間有什么關(guān)系呢?之間有什么關(guān)系呢?例例: :已知已知ABCABC ,且相似比為,且相似比為k k,ADAD、 分別是分別是ABCABC、 對應(yīng)邊對應(yīng)邊BCBC、 上的高,上的高, 求證:求證:2kSSCBAABCDACBACB證明:證明:ABCABCCBAkCBBCkDAAD,22121kCBDABCADSSCBAABCCBADABCD
8、CAB結(jié)論:結(jié)論:相似三角形面積的比等于相似比的平方相似三角形面積的比等于相似比的平方. . (1)(1)ADEADE與與ABCABC相似嗎?如果相似,相似嗎?如果相似, 求它們的相似比求它們的相似比. . ABCDE1 4 ._)3(ABCADESS(2) (2) ADEADE的周長的周長ABCABC的周長的周長_._. 1 4 161例例:如圖,:如圖,DEBCDEBC, DE = 1, BC = 4DE = 1, BC = 4,(4)(4)BCED四邊形SSADE1511 1:已知:已知ABCABCDEFDEF,BGBG、EHEH分別是分別是ABCABC和和 DEFDEF的角平分線,的角
9、平分線,BCBC6cm,EF6cm,EF4cm,BG4cm,BG4.8cm.4.8cm.求求EHEH的長。的長。解:解: ABCDEF BC EFBG EH6 44.8 EHEH3.2(cm)答:答:EH的長為的長為3.2cm。AGBCDEFH課堂訓(xùn)練課堂訓(xùn)練1 1、已知兩個等邊三角形的邊長之比為、已知兩個等邊三角形的邊長之比為 2 2 :3 3,且它們的面積之和為,且它們的面積之和為26cm26cm2 2,則,則較小的等邊三角形的面積為多少?較小的等邊三角形的面積為多少?拓展訓(xùn)練學(xué)學(xué) 而而 不不 思思 則則 罔罔回頭一看,我想說回頭一看,我想說課堂小結(jié)課堂小結(jié) 1、相似三角形對應(yīng)邊成_,對應(yīng)角_. 2、相似三角形對應(yīng)邊上的高、對應(yīng)邊上的中線、 對應(yīng)角平分線的比都等于_. 3、相似三角形周長的比等于_, 相似三角形面積的比等于_. 課堂小結(jié)相似比的平方相似比的平方相似三角形的性質(zhì)相似三角形的性質(zhì)相似多邊形相似多邊形也有同樣的也有同樣的結(jié)論喲!結(jié)論喲!比例比例相等相等相似比相似比相似比相似比GGHHF FE EA AC CB BDD例例如圖如圖, , ABCABC是一塊銳角三角形的余料,是一塊銳角三角形的余料,邊長邊長 BCBC60cm60cm,高,高ADAD40cm40cm,要把它加工,要把它加工成正方形零件,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 復(fù)寫紙企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 便攜式血氧監(jiān)測貼片行業(yè)跨境出海戰(zhàn)略研究報告
- 尼龍絲線企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 醋酸釤銪釓企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 毛皮手套企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 銻礦采選企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 醫(yī)用橡膠氣管切開墊行業(yè)跨境出海戰(zhàn)略研究報告
- 養(yǎng)生保健品市場營銷行業(yè)跨境出海戰(zhàn)略研究報告
- 木粉企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 女式?jīng)鐾闲髽I(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 人教版小學(xué)六年級下冊音樂教案全冊
- 12J201平屋面建筑構(gòu)造圖集(完整版)
- 2024年個人信用報告(個人簡版)樣本(帶水印-可編輯)
- 16J914-1 公用建筑衛(wèi)生間
- 20CS03-1一體化預(yù)制泵站選用與安裝一
- (完整版)四年級上冊數(shù)學(xué)豎式計算題100題直接打印版
- 排水溝施工合同電子版(精選5篇)
- 2022年蘇州衛(wèi)生職業(yè)技術(shù)學(xué)院單招語文模擬試題及答案
- 《酒店品牌建設(shè)與管理》課程教學(xué)大綱
- TSG11-2020 鍋爐安全技術(shù)規(guī)程
- 大氣商務(wù)企業(yè)培訓(xùn)之團隊合作的重要性PPT模板
評論
0/150
提交評論