第三章誤差理論_第1頁
第三章誤差理論_第2頁
第三章誤差理論_第3頁
第三章誤差理論_第4頁
第三章誤差理論_第5頁
已閱讀5頁,還剩43頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2022年4月27日星期三 長安大學(xué)地測學(xué)院1第三章第三章 測量誤差理論及其處理基礎(chǔ)測量誤差理論及其處理基礎(chǔ)3.1 測量誤差概述測量誤差概述3.2 偶然誤差的特性偶然誤差的特性3.3 衡量精度的指標(biāo)衡量精度的指標(biāo)3.4誤差傳播定律誤差傳播定律3.5等精度直接觀測平差等精度直接觀測平差3.6不等精度直接觀測平差不等精度直接觀測平差2022年4月27日星期三 長安大學(xué)地測學(xué)院2 測量與觀測值測量與觀測值 觀測觀測與觀測值的分類與觀測值的分類 觀測條件觀測條件 等精度觀測和不等精度觀測等精度觀測和不等精度觀測 直接觀測和間接觀測直接觀測和間接觀測 獨(dú)立獨(dú)立觀測和非獨(dú)立觀測觀測和非獨(dú)立觀測3.1 3.

2、1 測量誤差概述測量誤差概述測量測量即將物理量與作為單位的量比較,求出其相對于即將物理量與作為單位的量比較,求出其相對于單位量的數(shù)值過程。一次測量過程稱觀測,得到的單位量的數(shù)值過程。一次測量過程稱觀測,得到的數(shù)值稱觀測值或觀測結(jié)果。數(shù)值稱觀測值或觀測結(jié)果。 觀測誤差與模型誤差觀測誤差與模型誤差2022年4月27日星期三 長安大學(xué)地測學(xué)院3 一、一、 測量誤差產(chǎn)生的原因測量誤差產(chǎn)生的原因 測量誤差的來源測量誤差的來源(1 1)儀器誤差:儀器誤差:儀器精度的局限、軸系殘余誤差等。儀器精度的局限、軸系殘余誤差等。(2 2)人為誤差:人為誤差:判斷力和分辨率的限制、經(jīng)驗(yàn)等。判斷力和分辨率的限制、經(jīng)驗(yàn)等

3、。(3 3)外界條件的影響:外界條件的影響:溫度變化、風(fēng)、大氣折光等溫度變化、風(fēng)、大氣折光等 測量誤差的表現(xiàn)形式測量誤差的表現(xiàn)形式 測量誤差(真誤差測量誤差(真誤差=觀測值-真值)Xl jiijllXl(觀測值與真值之差)(觀測值與觀測值之差)2022年4月27日星期三 長安大學(xué)地測學(xué)院4例:例: 誤差誤差 處理方法處理方法 鋼尺尺長誤差鋼尺尺長誤差 l ld d 計(jì)算改正計(jì)算改正 鋼尺溫度誤差鋼尺溫度誤差 l lt t 計(jì)算改正計(jì)算改正 水準(zhǔn)儀水準(zhǔn)儀i i角誤差角誤差 操作時抵消操作時抵消( (前后視等距前后視等距) ) 經(jīng)緯儀視準(zhǔn)軸誤差經(jīng)緯儀視準(zhǔn)軸誤差C C 操作時抵消操作時抵消( (盤左

4、盤右取平均盤左盤右取平均) ) 2.2.系統(tǒng)誤差系統(tǒng)誤差 誤差出現(xiàn)的大小、符號相同,或按誤差出現(xiàn)的大小、符號相同,或按 規(guī)律性變化,具有規(guī)律性變化,具有積累性積累性。 系統(tǒng)誤差可以消除或減弱系統(tǒng)誤差可以消除或減弱。 ( (計(jì)算改正、觀測方法、儀器檢校計(jì)算改正、觀測方法、儀器檢校) )二、測量誤差的分類:二、測量誤差的分類:1.1.粗差粗差( (錯誤錯誤) )超限的誤差。不允許出現(xiàn)在測量超限的誤差。不允許出現(xiàn)在測量結(jié)果中。結(jié)果中。2022年4月27日星期三 長安大學(xué)地測學(xué)院53.3.偶然誤差偶然誤差誤差出現(xiàn)的大小、符號各不相同,誤差出現(xiàn)的大小、符號各不相同, 表面看無規(guī)律性。表面看無規(guī)律性。 例

5、:估讀數(shù)、氣泡居中判斷、瞄準(zhǔn)、對中等誤差,例:估讀數(shù)、氣泡居中判斷、瞄準(zhǔn)、對中等誤差, 導(dǎo)致觀測值產(chǎn)生誤差導(dǎo)致觀測值產(chǎn)生誤差 。三、測量誤差的處理原則三、測量誤差的處理原則 多余觀測多余觀測 四、測量平差四、測量平差2022年4月27日星期三 長安大學(xué)地測學(xué)院6舉例舉例: : 在某測區(qū),等精度觀測了在某測區(qū),等精度觀測了358358個三角形的內(nèi)個三角形的內(nèi) 角之和,得到角之和,得到358358個三角形閉合差個三角形閉合差 i i( (偶然誤偶然誤 差,也即真誤差差,也即真誤差) ) ,然后對三角形閉合差,然后對三角形閉合差 i i 進(jìn)行分析。進(jìn)行分析。 分析結(jié)果表明,分析結(jié)果表明,當(dāng)觀測次數(shù)很

6、多時,偶然當(dāng)觀測次數(shù)很多時,偶然 誤差的出現(xiàn),呈現(xiàn)出統(tǒng)計(jì)學(xué)上的規(guī)律性。誤差的出現(xiàn),呈現(xiàn)出統(tǒng)計(jì)學(xué)上的規(guī)律性。而而 且,觀測次數(shù)越多,規(guī)律性越明顯。且,觀測次數(shù)越多,規(guī)律性越明顯。3.3 3.3 偶然誤差的特性偶然誤差的特性2022年4月27日星期三 長安大學(xué)地測學(xué)院72022年4月27日星期三 長安大學(xué)地測學(xué)院8用用頻率直方圖頻率直方圖表示的偶然誤差統(tǒng)計(jì):表示的偶然誤差統(tǒng)計(jì):頻率直方圖的中間高、兩邊低,并向橫軸逐漸逼近,頻率直方圖的中間高、兩邊低,并向橫軸逐漸逼近, 對稱于對稱于y軸。軸。頻率直方圖中,每一條形的面積表示誤差出現(xiàn)在該區(qū)頻率直方圖中,每一條形的面積表示誤差出現(xiàn)在該區(qū) 間的頻率間的頻

7、率k/n,而所有條形的,而所有條形的總面積等于總面積等于1。各條形頂邊中點(diǎn)各條形頂邊中點(diǎn)連線經(jīng)光滑后的曲連線經(jīng)光滑后的曲線形狀,表現(xiàn)出偶線形狀,表現(xiàn)出偶然誤差的普遍規(guī)律然誤差的普遍規(guī)律 圖3-1 誤差統(tǒng)計(jì)直方圖2022年4月27日星期三 長安大學(xué)地測學(xué)院9從誤差統(tǒng)計(jì)表和頻率直方圖中,可以歸納出偶然誤從誤差統(tǒng)計(jì)表和頻率直方圖中,可以歸納出偶然誤 差的差的四個特性四個特性:特性(1)、(2)、(3)決定了特性(4),特性特性(4)具有實(shí)用意義。具有實(shí)用意義。 3.3.偶然誤差的特性偶然誤差的特性(1)(1)在一定的觀測條件下,偶然誤差的絕對值不會超過一定在一定的觀測條件下,偶然誤差的絕對值不會超過

8、一定 的限值的限值( (有界性有界性) );(2)(2)絕對值小的誤差比絕對值大的誤差出現(xiàn)的頻率大絕對值小的誤差比絕對值大的誤差出現(xiàn)的頻率大( (聚中性聚中性) );(3)(3)絕對值相等的正誤差和負(fù)誤差出現(xiàn)的頻率大致相等絕對值相等的正誤差和負(fù)誤差出現(xiàn)的頻率大致相等( (對稱性對稱性) );(4)(4)當(dāng)觀測次數(shù)無限增加時,偶然誤差的算術(shù)平均值趨近于零當(dāng)觀測次數(shù)無限增加時,偶然誤差的算術(shù)平均值趨近于零 ( (抵償性抵償性) ): 0limlim21nnnnn2022年4月27日星期三 長安大學(xué)地測學(xué)院10偶然誤差具有正態(tài)分布的特性偶然誤差具有正態(tài)分布的特性當(dāng)觀測次數(shù)當(dāng)觀測次數(shù)n n無限增多無限

9、增多(n(n)、誤差區(qū)間誤差區(qū)間d d 無限縮小無限縮小( (d d 0)0)時,各矩形的頂邊就連成一條光滑的曲線,時,各矩形的頂邊就連成一條光滑的曲線,這條曲線稱為這條曲線稱為“正態(tài)分布曲正態(tài)分布曲線線”,又稱為,又稱為“高斯誤差分高斯誤差分布曲線布曲線”。所以偶然誤差所以偶然誤差具有具有正態(tài)分布正態(tài)分布的特性。的特性。圖3-2 誤差頻率直方圖2022年4月27日星期三 長安大學(xué)地測學(xué)院113.2 3.2 衡量精度的指標(biāo)衡量精度的指標(biāo)準(zhǔn)確度(外部精度) 測量成果與真值接近的程度 系統(tǒng)誤差越小,準(zhǔn)確度越高一、精度的概念一、精度的概念: :精密度(內(nèi)部精度) 觀測值之間的離散程度 偶然誤差越小,

10、準(zhǔn)確度越高精度是準(zhǔn)確度與精密度的統(tǒng)稱,無系統(tǒng)誤差時二者統(tǒng)一2022年4月27日星期三 長安大學(xué)地測學(xué)院121.1.方差與中誤差方差與中誤差 由正態(tài)分布密度函數(shù) 22221axex式中 、 為常數(shù);a =2.72828ex=y正態(tài)分布曲線(a=0)令:令: ,上式為:ax22221)(efy二、衡量精度的指標(biāo)二、衡量精度的指標(biāo)2022年4月27日星期三 長安大學(xué)地測學(xué)院13標(biāo)準(zhǔn)差 的數(shù)學(xué)意義22221)(efy 表示表示 的的離散程度離散程度x=y較小較大nnnnlimlim2稱為標(biāo)準(zhǔn)差標(biāo)準(zhǔn)差:nnnnnlimlim22222122上式中, 稱為方差方差:2022年4月27日星期三 長安大學(xué)地測

11、學(xué)院14測量工作中,用中誤差中誤差作為衡量觀測值精度的標(biāo)準(zhǔn)。中誤差中誤差: :觀測次數(shù)無限多時,用標(biāo)準(zhǔn)差觀測次數(shù)無限多時,用標(biāo)準(zhǔn)差 表示偶然誤差的離散情形:表示偶然誤差的離散情形:nnlim上式中,偶然誤差上式中,偶然誤差 為觀測值為觀測值 與真值與真值X之差:之差:觀測次數(shù)觀測次數(shù)n n有限有限時,用時,用中誤差中誤差m表示偶然誤差的離散情形:表示偶然誤差的離散情形:nnmn22221i=i - X2022年4月27日星期三 長安大學(xué)地測學(xué)院15P123表5-22022年4月27日星期三 長安大學(xué)地測學(xué)院16 m m1 1小于小于m m2 2, ,說明第一組觀測值的誤差分布比較說明第一組觀測

12、值的誤差分布比較集中集中, 其其精度較高精度較高;相對地,第二組觀測值的誤差分布比;相對地,第二組觀測值的誤差分布比 較較離散,離散,其其精度較低:精度較低: m1=2.7是第一組觀測值的中誤差; m2=3.6是第二組觀測值的中誤差。2022年4月27日星期三 長安大學(xué)地測學(xué)院172.2.容許誤差容許誤差(極限誤差) 根據(jù)誤差分布的密度函數(shù),誤差出現(xiàn)在微分區(qū)間d內(nèi)的概率為:demdfPm22221)()(誤差出現(xiàn)在K倍中誤差區(qū)間內(nèi)的概率為:kmkmmdemkmP22221)( 將K=1、2、3分別代入上式,可得到偶然誤差分別出現(xiàn)在一倍、二倍、三倍中誤差區(qū)間內(nèi)的概率: P(| m)=0.683=

13、68.3 P(|2m)=0.954=95.4 P(|3m)=0.997=99.7 測量中,一般取三倍中誤差(3m)作為容許誤差,也稱為限差:|容|=3|m| 或 |容|=2|m|2022年4月27日星期三 長安大學(xué)地測學(xué)院18 3.3.相對誤差相對誤差(相對中誤差) 誤差絕對值與觀測量之比。 用于表示距離距離的精度。用分子為1的分?jǐn)?shù)表示。分?jǐn)?shù)值較小相對精度較高;分?jǐn)?shù)值較大相對精度較低。 K2K1,所以距離,所以距離S2精度較高精度較高。例例2 2:用鋼尺丈量兩段距離分別得用鋼尺丈量兩段距離分別得S S1 1=200=200米米,m,m1 1=0.02m=0.02m; S S2 2=1000=1

14、000米米,m,m2 2=0.02m=0.02m。計(jì)算。計(jì)算S S1 1、S S2 2的相對誤差。的相對誤差。 0.02 1 0.02 1 K1= = ; K2= = 200 10000 1000 50000解:解:2022年4月27日星期三 長安大學(xué)地測學(xué)院19一一.一般函數(shù)的中誤差一般函數(shù)的中誤差令 的系數(shù)為 , (c)式為:ixiixFf由于 和 是一個很小的量,可代替代替上式中的 和 : ixidxdznnxxFxxFxxF2211(c)代入(b)得對(a)全微分:nndxxFdxxFdxxFdZ2211(b)設(shè)有函數(shù):),(21nxxxFZ為獨(dú)立獨(dú)立觀測值ix設(shè) 有真誤差 ,函數(shù) 也

15、產(chǎn)生真誤差ixixZ(a)3.4 3.4 誤差傳播定律誤差傳播定律2022年4月27日星期三 長安大學(xué)地測學(xué)院20)()(22)(11)()2()2(22)2(11)2() 1 () 1 (22) 1 (11) 1 (knnkkknnnnxfxfxfxfxfxfxfxfxf對Z觀測了k次,有k個式(d)對(d)式中的一個式子取平方:(i,j=1n且ij)jijinnxxffxxffxxffxfxfxf2223131212122222221212(e)對K個(e)式取總和:njijijijinnxxffxfxfxf1,222222212122(f)2022年4月27日星期三 長安大學(xué)地測學(xué)院21

16、njijijijinnxxffxfxfxf1,222222212122(f)(f)式兩邊除以K,得(g)式:(g)njijijijinnKxxffKxfKxfKxfK1,222222212122由偶然誤差的抵償性知:0limnxxjin(g)式最后一項(xiàng)極小于前面各項(xiàng),可忽略不計(jì),則:則:前面各項(xiàng)KxfKxfKxfKnn22222221212即即22222221212xnnxxzmfmfmfm(h)2022年4月27日星期三 長安大學(xué)地測學(xué)院2222222221212xnnxxzmfmfmfm(h)考慮考慮 ,代入上式,得中誤差關(guān)系式:,代入上式,得中誤差關(guān)系式:iixFf2222222121n

17、nZmxFmxFmxFm(3-26)上式為上式為一般函數(shù)的中誤差公式一般函數(shù)的中誤差公式,也稱為,也稱為誤差傳播定律誤差傳播定律。2022年4月27日星期三 長安大學(xué)地測學(xué)院23 通過以上誤差傳播定律的推導(dǎo),我們通過以上誤差傳播定律的推導(dǎo),我們可以總結(jié)出可以總結(jié)出求觀測值函數(shù)中誤差的步驟求觀測值函數(shù)中誤差的步驟: 1.列出函數(shù)式;列出函數(shù)式; 2.對函數(shù)式求全微分;對函數(shù)式求全微分; 3.套用誤差傳播定律,寫出中誤差式。套用誤差傳播定律,寫出中誤差式。 2022年4月27日星期三 長安大學(xué)地測學(xué)院24 1.倍數(shù)函數(shù)的中誤差 設(shè)有函數(shù)式 (x為觀測值,K為x的系數(shù)) 全微分 得中誤差式xxZKm

18、mKmKdxdZKxZ22例:例:量得 地形圖上兩點(diǎn)間長度 =168.5mm0.2mm, 計(jì)算該兩點(diǎn)實(shí)地距離S及其中誤差ms:l1000:1m2 . 0m5 .168m2 . 0mm2002 . 01000100010001000SmmddlSlSlS解:解:列函數(shù)式 求全微分 中誤差式二二 .幾種常用函數(shù)的中誤差幾種常用函數(shù)的中誤差 2022年4月27日星期三 長安大學(xué)地測學(xué)院252.線性函數(shù)的中誤差線性函數(shù)的中誤差 設(shè)有函數(shù)式 全微分 中誤差式nnxkxkxkZ2211nndxkdxkdxkdz22112222222121nnZmkmkmkm例:例:設(shè)有某線性函數(shù)設(shè)有某線性函數(shù) 其中其中

19、、 、 分別為獨(dú)立觀測值,它們的中誤差分分別為獨(dú)立觀測值,它們的中誤差分 別為別為 求Z的中誤差 。 314121491144xxxZ321xxxmm6,mm2,mm3321mmmZm314121491144dxdxdxdzmm6 . 1623214121492144233222211xxxZmfmfmfm解:解:對上式全微分:由中誤差式得:2022年4月27日星期三 長安大學(xué)地測學(xué)院26 函數(shù)式 全微分 中誤差式 nnnnnllllx12111lnnlnlnddddx1211121221211222nnnnxmmmm3.算術(shù)平均值的中誤差式算術(shù)平均值的中誤差式 由于等精度觀測時, ,代入上式

20、: 得mmmmn21nmmnnmX221n 由此可知,算術(shù)平均值的中誤差比觀測值的中誤差縮小了縮小了 倍。 對某觀測量進(jìn)行多次觀測(多余觀測)取平均, 是提高觀測成果精度最有效的方法。2022年4月27日星期三 長安大學(xué)地測學(xué)院274.和或差函數(shù)的中誤差和或差函數(shù)的中誤差 函數(shù)式: 全微分: 中誤差式:nxxxZ21ndxdxdxdz2122221nZmmmm當(dāng)?shù)染扔^測時: 上式可寫成:mmmmmn321nmmZ例:例:測定A、B間的高差 ,共連續(xù)測了9站。設(shè)測量 每站高差的中誤差 ,求總高差 的中 誤差 。 解:解: ABhmm2mhmABh921hhhhABmm692nmmh2022年4

21、月27日星期三 長安大學(xué)地測學(xué)院28觀測值函數(shù)中誤差公式匯總 觀測值函數(shù)中誤差公式匯總觀測值函數(shù)中誤差公式匯總 函數(shù)式 函數(shù)的中誤差一般函數(shù)倍數(shù)函數(shù) 和差函數(shù) 線性函數(shù) 算術(shù)平均值 ),(21nxxxFZ2222222121nnZmxFmxFmxFmxxZKmmKmKxZ22nxxxZ21nmmZnnxkxkxkZ22112222222121nnZmkmkmkmnnnnnllllx12111nmmX2022年4月27日星期三 長安大學(xué)地測學(xué)院29誤差傳播定律的應(yīng)用誤差傳播定律的應(yīng)用 用DJ6經(jīng)緯儀觀測三角形內(nèi)角時,每個內(nèi)角觀測4個測回取平均,可使得三角形閉合差 m m1515 。例例1:要求三

22、角形最大閉合差m15 ,問用DJ6經(jīng)緯儀觀測三角形每個內(nèi)角時須用幾個測回? 123=(1+2+3)-180解:解:由題意:2m= 15,則 m= 7.5每個角的測角中誤差:3 . 435 . 7m測回即43 . 45 . 8,5 . 83 . 4,22nnnmmx由于DJ6一測回角度中誤差為:由角度測量n測回取平均值的中誤差公式:5 . 826m3 . 435 . 7 xm2022年4月27日星期三 長安大學(xué)地測學(xué)院30誤差傳播定律的應(yīng)用誤差傳播定律的應(yīng)用例2:試用中誤差傳播定律分析視距測量的精度。 解:(1)測量水平距離的精度 基本公式: 2cosKlD 求全微分: dKldlKdDdllD

23、dD)cossin2(cos2水平距離中誤差: 22222)2sin()cos( mKlmKmlD)206265( 其中: 2022年4月27日星期三 長安大學(xué)地測學(xué)院31誤差傳播定律的應(yīng)用誤差傳播定律的應(yīng)用例2:試用中誤差傳播定律分析視距測量的精度。 解: (2)測量高差的精度 基本公式: 求全微分: dKldlKdDdllDdD)cossin2(cos2高差中誤差: 2222)2cos(2sin21 mKlmKmlh2sin21Klh )206265( 其中: 2022年4月27日星期三 長安大學(xué)地測學(xué)院32誤差傳播定律的應(yīng)用誤差傳播定律的應(yīng)用例3:(1)用鋼尺丈量某正方形一條邊長為 求該

24、正方形的周長S和面積A的中誤差.解: (1)周長 , lml (2)用鋼尺丈量某正方形四條邊的邊長為其中: 求該正方形的周長S和面積A的中誤差.iliml lllllmmmmmlllll43214321且lS4lSmm4 面積 , 2lAlAlmm2 周長的中誤差為 dldS4全微分:面積的中誤差為 全微分:ldldA22022年4月27日星期三 長安大學(xué)地測學(xué)院33解:(1)周長和面積的中誤差分別為 例3:(2)用鋼尺丈量某正方形四條邊的邊長為其中: 求該正方形的周長S和面積A的中誤差.iliml lllllmmmmmlllll43213321且lSmm4lAlmm2 (2)周長 ;周長的中

25、誤差為 lllllS44321 面積llllllSmmmmmmm24222224321 得周長的中誤差為 2243214LllllA全微分:432141414141dldldldldL 但由于LdLdA2llllllAlmmLmLmLmLmLm222222222244222243212022年4月27日星期三 長安大學(xué)地測學(xué)院34 觀測值的算術(shù)平均值觀測值的算術(shù)平均值(最或是值) 用觀測值的改正數(shù)用觀測值的改正數(shù)v v計(jì)算觀測值的計(jì)算觀測值的 中誤差中誤差 (即:白塞爾公式)3.5 3.5 同(等)精度直接觀測平差同(等)精度直接觀測平差2022年4月27日星期三 長安大學(xué)地測學(xué)院35 一一.

26、 .觀測值的觀測值的算術(shù)平均值算術(shù)平均值(最或是值、最可靠值) 證明算術(shù)平均值為該量的最或是值: 設(shè)該量的真值為X,則各觀測值的真誤差為 1= 1- X 2= 2- X n= n- X對某未知量未知量進(jìn)行了n 次觀測,得n個觀測值1,2,n,則該量的算術(shù)平均值為:x= =1+2+nnn上式等號兩邊分別相加得和: lnX L= nlnlllLn21 nXl 2022年4月27日星期三 長安大學(xué)地測學(xué)院36當(dāng)觀測無限多次時:nlXnnnlimlim得Xnlnlim兩邊除以n:由 lnX nlXn當(dāng)觀測次數(shù)無限多時,觀測值的算術(shù)平均值就是該 量的真值;當(dāng)觀測次數(shù)有限時,觀測值的算術(shù)平均 值最接近真值

27、。所以,算術(shù)平均值是最或是值。L X nXl XLXnln 0)(limlimXLnnn2022年4月27日星期三 長安大學(xué)地測學(xué)院37觀測值改正數(shù)特點(diǎn)二二. .觀測值的改正數(shù)觀測值的改正數(shù)v v : 以算術(shù)平均值為最或是值,并據(jù)此計(jì)算各觀測值的改正數(shù) v ,符合vv=min 的“最小二乘原則”。Vi = L - i (i=1,2,n)特點(diǎn)特點(diǎn)1 改正數(shù)總和為零:改正數(shù)總和為零:對上式取和:以 代入:通常用于計(jì)算檢核L= nv=nL- nv =n -=0v =0特點(diǎn)特點(diǎn)2 vv符合符合“最小二乘原則最小二乘原則”:則即vv=(x-)2=min=2(x-)=0dvv dx(x-)=0nx-=0

28、x= n2022年4月27日星期三 長安大學(xué)地測學(xué)院38精度評定 比較前面的公式,可以證明,兩式根號內(nèi)的部分是相等的,1nvvnnmnvvm1即在 與 中:精度評定精度評定用觀測值的改正數(shù)v計(jì)算中誤差1nvvm一.計(jì)算公式(即白塞爾公式):2022年4月27日星期三 長安大學(xué)地測學(xué)院391nvvn證明如下:證明如下:nnnnlxvlXlxvlXlxvlX22221111真誤差:真誤差:改正數(shù):改正數(shù):證明兩式根號內(nèi)相等XlXlXlnn2211nnlLvlLvlLv2211iiiivXLv對上式取n項(xiàng)的平方和 vvvn22由上兩式得其中: 0lnLv2022年4月27日星期三 長安大學(xué)地測學(xué)院4

29、0證明兩式根號內(nèi)相等 222222)(nnXlnnXnlXL njijijinn1,2222122122)( 02222nn vvnvvvn222nvvnn21nvvn中誤差定義:nm白塞爾公式:1nvvm2022年4月27日星期三 長安大學(xué)地測學(xué)院41解:解:該水平角該水平角真值未知真值未知,可用,可用算術(shù)平均值的改正數(shù)算術(shù)平均值的改正數(shù)V V計(jì)計(jì) 算其中誤差:算其中誤差:例:例:對某水平角等精度觀測了5次,觀測數(shù)據(jù)如下表, 求其算術(shù)平均值及觀測值的中誤差。算例1:次數(shù)觀測值VV V備注1764249-4162764240+5253764242+394764246-115764248-39平

30、均764245 V =0VV=60 98315601 .nVVm4715983 .nmM7642451.74 2022年4月27日星期三 長安大學(xué)地測學(xué)院42距離丈量精度計(jì)算例算例算例2:對某距離用精密量距方法丈量六次,求對某距離用精密量距方法丈量六次,求該距離的算術(shù)該距離的算術(shù) 平均值平均值 ; 觀測值的中誤差觀測值的中誤差 ; 算術(shù)平均值的中誤算術(shù)平均值的中誤 差差 ; 算術(shù)平均值的相對中誤差算術(shù)平均值的相對中誤差 :xxmMxM /凡是相對中誤差,都必須用分子為1的分?jǐn)?shù)表示。2022年4月27日星期三 長安大學(xué)地測學(xué)院433.6 3.6 不同精度直接觀測平差不同精度直接觀測平差一、權(quán)的概念 權(quán)是權(quán)衡利弊、權(quán)衡輕重的意思。在測量工作中權(quán)是一個表示觀測結(jié)果可靠程度的相對性指標(biāo)。1 權(quán)的定義:設(shè)一組

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論