![在隨機(jī)實(shí)驗(yàn)中_第1頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/23/838d4130-a59e-43cd-832b-38b151daed2c/838d4130-a59e-43cd-832b-38b151daed2c1.gif)
![在隨機(jī)實(shí)驗(yàn)中_第2頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/23/838d4130-a59e-43cd-832b-38b151daed2c/838d4130-a59e-43cd-832b-38b151daed2c2.gif)
![在隨機(jī)實(shí)驗(yàn)中_第3頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/23/838d4130-a59e-43cd-832b-38b151daed2c/838d4130-a59e-43cd-832b-38b151daed2c3.gif)
![在隨機(jī)實(shí)驗(yàn)中_第4頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/23/838d4130-a59e-43cd-832b-38b151daed2c/838d4130-a59e-43cd-832b-38b151daed2c4.gif)
![在隨機(jī)實(shí)驗(yàn)中_第5頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/23/838d4130-a59e-43cd-832b-38b151daed2c/838d4130-a59e-43cd-832b-38b151daed2c5.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1234011/21/32/31/2 + 1/2 = 11/3 + 1/3 + 1/3 = 11/4 + 1/4 + 1/4 + 1/4 = 1The probability of each value5011/21/32/31/2 + 1/2 = 11/3 + 1/3 + 1/3 = 11/4 + 1/4 + 1/4 + 1/4 = 1As the number of values increases the probability of each value decreases. This is so because the sum of all the probabilities rem
2、ains 1. When the number of values approaches infinity (because X is continuous) the probability of each value approaches 0.The probability of each value6x1x2Area = 1P(x1=X=x2)712) ab ()X(V2baE(X). bxaab1) x ( f289200050001/3000f(x) = 1/(5000-2000) = 1/3000 for x: 2000,5000 x2500 3000P(2500X3000) = (
3、3000-2500)(1/3000) = .166710200050001/3000f(x) = 1/(5000-2000) = 1/3000 for x: 2000,5000 x4000P(X4000) = (5000-4000)(1/3000) = .33311200050001/3000f(x) = 1/(5000-2000) = 1/3000 for x: 2000,5000 x2500P(X=2500) = (2500-2500)(1/3000) = 01213141516The normal distribution is bell shaped, and symmetrical
4、around m.mWhy symmetrical? Let m = 100. Suppose x = 110. 2210) 2/ 1 (100110) 2/ 1 (e21e21)110( fNow suppose x = 902210) 2/ 1 (10090) 2/ 1 (e21e21)90( f1109017The effects of m m and How does the standard deviation affect the shape of f(x)?= 2 =3 =4m = 10m = 11 m = 12How does the expected value affect
5、 the location of f(x)?182221?2xbap aXbedxm192,mNmX dzzfbZapba2021E(Z) = m = 0V(Z) = 2 = 1Every normal variablewith some m and , canbe transformed into this Z.Therefore, once probabilities for Zare calculated, probabilities of any normal variable can be found.22P(45X60) = P( )45X60 m- 50 - 501010= P(
6、-0.5 Z 0Z = 0Z = z0P(0Zz0)24P(45X60) = P( )45X60 m- 50 - 501010= P(-.5 Z 1)z0 = 1z0 = -.5We need to find the shaded area25P(-.5Z0)+ P(0Z1)P(45X60) = P( )45X60 m- 50 - 501010z00.1.0.050.060.00.00000.00400.01990.02390.10.03980.04380.05960.636.1.00.34130.34380.35310.3554.P(0Z1= P(-.5Z1) =z=0z0 = 1z0 =-
7、.5.341326-z0+z00P(-z0Z0) = P(0Zz0)27z00.1.0.050.060.00.00000.00400.01990.02390.10.03980.04380.05960.636.0.50.1915.3413.5-.5.191528z00.1.0.050.060.00.00000.00400.01990.02390.10.03980.04380.05960.636.0.50.1915.1915.1915.1915.1915.3413.5-.5P(-.5Z1) = P(-.5Z0)+ P(0Z1) = .1915 + .3413 = .53281.02910%0%20
8、-2(i) P(X 0 ) = P(Z ) = P(Z2) =ZX.47720.5 - P(0Z2) = 0.5 - .4772 = .02283010%0%-1(ii) P(X 0 ) = P(Z ) 0 - 1010= P(Z1) =ZX.34130.5 - P(0Z1) = 0.5 - .3413 = .1587Find Normal Probabilities131zAA320.05Z0.0500.451.6450.05-Z0.05332222npq3435363700.511.522.5f(x) = 2e-2xf(x) = 1e-1xf(x) = .5e-.5x0 1 2 3 4 5
9、Exponential distribution for l = .5, 1, 200.511.522.5abP(axb) = e-la - e-lb 3839404142Compute Exponential probabilities43444500.050.10.150.2-6-4-2024600.050.10.150.2-6-5-4-3-2-10123456n n = 3n n = 104647Degrees of Freedom13.0786.31412.70631.82163.65721.8862.924.3036.9659.925.101.3721.8122.2282.7643.
10、169.2001.2861.6531.9722.3452.6011.2821.6451.962.3262.576tAt.100t.05t.025t.01t.005A = .05A = .05-tAThe t distribution issymmetrical around 0=1.812=-1.812484900.00020.00040.00060.00080.0010.00120.00140.00160.001805101520253035n n = 5n n = 105005101520253035Ac c2A5105101520253035=.05A =.99c2.995 c2.990 c2.05 c2.010 c2.005Ac2ATo find c2 for which P(c2nc2)=.01, lookup the column labeledc21-.01 or c2.99c c2 2.05.05
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 江西環(huán)境工程職業(yè)學(xué)院《人居環(huán)境概論一》2023-2024學(xué)年第二學(xué)期期末試卷
- 對(duì)外經(jīng)濟(jì)貿(mào)易大學(xué)《專(zhuān)利代理與審查專(zhuān)題》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖北師范大學(xué)文理學(xué)院《國(guó)際投資》2023-2024學(xué)年第二學(xué)期期末試卷
- 武漢電力職業(yè)技術(shù)學(xué)院《國(guó)際營(yíng)銷(xiāo)nternatonaMarketng》2023-2024學(xué)年第二學(xué)期期末試卷
- 重慶對(duì)外經(jīng)貿(mào)學(xué)院《現(xiàn)代冶金工程設(shè)計(jì)原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 南京體育學(xué)院《成本管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 武漢輕工大學(xué)《新媒體產(chǎn)品策劃實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西衛(wèi)生職業(yè)學(xué)院《設(shè)計(jì)理論》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海外國(guó)語(yǔ)大學(xué)《幼兒園舞蹈創(chuàng)編》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年度個(gè)人車(chē)輛抵押貸款購(gòu)車(chē)二手車(chē)鑒定評(píng)估報(bào)告審查合同
- 蔚來(lái)用戶運(yùn)營(yíng)分析報(bào)告-數(shù)字化
- 中學(xué)生低碳生活調(diào)查報(bào)告
- 東軟入職合同
- 游泳池經(jīng)營(yíng)合作方案
- 擘畫(huà)未來(lái)技術(shù)藍(lán)圖
- 基于情報(bào)基本理論的公安情報(bào)
- 《“白山黑水”-東北三省》示范課課件(第1課時(shí))
- 孔氏家廟的社會(huì)調(diào)查報(bào)告
- 員工節(jié)能環(huán)保培訓(xùn)課件
- 華為公司的內(nèi)部審計(jì)制度
- 腫瘤醫(yī)院病歷書(shū)寫(xiě)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論