下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、§2.4平面向量的數(shù)量積第7課時一、 平面向量的數(shù)量積的物理背景及其含義教學(xué)目的:1.掌握平面向量的數(shù)量積及其幾何意義;2.掌握平面向量數(shù)量積的重要性質(zhì)及運算律;3.了解用平面向量的數(shù)量積可以處理有關(guān)長度、角度和垂直的問題;4.掌握向量垂直的條件.教學(xué)重點:平面向量的數(shù)量積定義教學(xué)難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應(yīng)用授課類型:新授課教 具:多媒體、實物投影儀內(nèi)容分析: 本節(jié)學(xué)習(xí)的關(guān)鍵是啟發(fā)學(xué)生理解平面向量數(shù)量積的定義,理解定義之后便可引導(dǎo)學(xué)生推導(dǎo)數(shù)量積的運算律,然后通過概念辨析題加深學(xué)生對于平面向量數(shù)量積的認(rèn)識.主要知識點:平面向量數(shù)
2、量積的定義及幾何意義;平面向量數(shù)量積的5個重要性質(zhì);平面向量數(shù)量積的運算律.教學(xué)過程:一、復(fù)習(xí)引入:1 向量共線定理 向量與非零向量共線的充要條件是:有且只有一個非零實數(shù),使=.2平面向量基本定理:如果,是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量,有且只有一對實數(shù)1,2使=1+23平面向量的坐標(biāo)表示 分別取與軸、軸方向相同的兩個單位向量、作為基底.任作一個向量,由平面向量基本定理知,有且只有一對實數(shù)、,使得把叫做向量的(直角)坐標(biāo),記作4平面向量的坐標(biāo)運算若,則,.若,則5 (¹)的充要條件是x1y2-x2y1=06線段的定比分點及 P1, P2是直線l上的兩點,P是
3、l上不同于P1, P2的任一點,存在實數(shù),使=,叫做點P分所成的比,有三種情況:>0(內(nèi)分)(外分) <0 (<-1) ( 外分)<0 (-1<<0)7. 定比分點坐標(biāo)公式:若點P(x1,y1) ,(x2,y2),為實數(shù),且,則點P的坐標(biāo)為(),我們稱為點P分所成的比.8. 點P的位置與的范圍的關(guān)系:當(dāng)時,與同向共線,這時稱點P為的內(nèi)分點.當(dāng)()時,與反向共線,這時稱點P為的外分點.9.線段定比分點坐標(biāo)公式的向量形式:在平面內(nèi)任取一點O,設(shè),可得=.10力做的功:W = |F|×|s|cosq,q是F與s的夾角.二、講解新課:1兩個非零向量夾角的概
4、念已知非零向量與,作,則()叫與的夾角.說明:(1)當(dāng)時,與同向;(2)當(dāng)時,與反向;(3)當(dāng)時,與垂直,記;(4)注意在兩向量的夾角定義,兩向量必須是同起點的.范圍0°q180°C2平面向量數(shù)量積(內(nèi)積)的定義:已知兩個非零向量與,它們的夾角是,則數(shù)量|a|b|cosq叫與的數(shù)量積,記作a×b,即有a×b= |a|b|cosq,().并規(guī)定0與任何向量的數(shù)量積為0.×探究:兩個向量的數(shù)量積與向量同實數(shù)積有很大區(qū)別(1)兩個向量的數(shù)量積是一個實數(shù),不是向量,符號由cosq的符號所決定.(2)兩個向量的數(shù)量積稱為內(nèi)積,寫成a×b;今后要
5、學(xué)到兩個向量的外積a×b,而a×b是兩個向量的數(shù)量的積,書寫時要嚴(yán)格區(qū)分.符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替.(3)在實數(shù)中,若a¹0,且a×b=0,則b=0;但是在數(shù)量積中,若a¹0,且a×b=0,不能推出b=0.因為其中cosq有可能為0.(4)已知實數(shù)a、b、c(b¹0),則ab=bc Þ a=c.但是a×b = b×ca = c 如右圖:a×b = |a|b|cosb = |b|OA|,b×c = |b|c|cosa =
6、 |b|OA|Þ a×b = b×c但a¹c (5)在實數(shù)中,有(a×b)c = a(b×c),但是(a×b)c¹a(b×c) 顯然,這是因為左端是與c共線的向量,而右端是與a共線的向量,而一般a與c不共線.3“投影”的概念:作圖定義:|b|cosq叫做向量b在a方向上的投影.投影也是一個數(shù)量,不是向量;當(dāng)q為銳角時投影為正值;當(dāng)q為鈍角時投影為負(fù)值;當(dāng)q為直角時投影為0;當(dāng)q = 0°時投影為 |b|;當(dāng)q = 180°時投影為-|b|.4向量的數(shù)量積的幾何意義:數(shù)量積a×
7、b等于a的長度與b在a方向上投影|b|cosq的乘積.5兩個向量的數(shù)量積的性質(zhì):設(shè)a、b為兩個非零向量,e是與b同向的單位向量.1°e×a = a×e =|a|cosq2°abÛa×b = 03° 當(dāng)a與b同向時,a×b = |a|b|;當(dāng)a與b反向時,a×b = -|a|b|. 特別的a×a = |a|2或4°cosq =5° |a×b| |a|b|三、講解范例:例1 已知|a|=5, |b|=4, a與b的夾角=120o,求a·b.例2 已知|a|=6
8、, |b|=4, a與b的夾角為60o求(a+2b)·(a-3b).例3 已知|a|=3, |b|=4,且a與b不共線,k為何值時,向量a+kb與a-kb互相垂直. 例4 判斷正誤,并簡要說明理由.·00;0·;0;·;若0,則對任一非零有·;·,則與中至少有一個為0;對任意向量,都有(·)(·);與是兩個單位向量,則.解:上述8個命題中只有正確;對于:兩個向量的數(shù)量積是一個實數(shù),應(yīng)有0·;對于:應(yīng)有·0;對于:由數(shù)量積定義有···cos,這里是與的夾角,只有或時,
9、才有··;對于:若非零向量、垂直,有·;對于:由·可知可以都非零;對于:若與共線,記.則·()·(·)(·),(·)·(·)(·)(·)若與不共線,則(·)(·).評述:這一類型題,要求學(xué)生確實把握好數(shù)量積的定義、性質(zhì)、運算律.例6 已知,當(dāng),與的夾角是60°時,分別求·.解:當(dāng)時,若與同向,則它們的夾角°,··cos0°3×6×118;若與反向,則它們的夾角180&
10、#176;,·cos180°3×6×(-1)18;當(dāng)時,它們的夾角90°,·;當(dāng)與的夾角是60°時,有·cos60°3×6×9評述:兩個向量的數(shù)量積與它們的夾角有關(guān),其范圍是0°,180°,因此,當(dāng)時,有0°或180°兩種可能.四、課堂練習(xí):1.已知|a|=1,|b|=,且(a-b)與a垂直,則a與b的夾角是( )A.60° B.30° C.135° D.°2.已知|a|=2,|b|=1,a與b之間的夾角為,那么向量m=a-4b的模為( )A.2 B.2 C.6 D.123.已知a、b是非零向量,則|a|=|b|是(a+b)與(a-b)垂直的( )A.充分但不必要條件 B.必要但不充分條件C.充要條件 D.既不充分也不必要條件4.已知向量a、b的夾角為,|a|=2,|b|=1,則|a+b|·|a-b|=.5.已知a+b=2i-8j,a-b=-8i+16j,其中i、j是直角坐標(biāo)系中x軸、y軸正方向上的單位向量,那么a·b=.6.已知ab、c與a、b的夾角均為60°,且|a|=1,|b|=2,|c|=3,則(a+2b-c)_.7.已知|a|=1,|b|=,(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛南醫(yī)學(xué)院《攝影與攝像》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛南師范大學(xué)《能源化工專業(yè)英語》2023-2024學(xué)年第一學(xué)期期末試卷
- 甘肅中醫(yī)藥大學(xué)《麻醉設(shè)備學(xué)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2022年上半年盧姨筆試幼兒綜合教資押題(含答案)
- 三年級數(shù)學(xué)上冊第五單元倍的認(rèn)識第1課時倍的認(rèn)識教案新人教版
- 三年級科學(xué)下冊四植物和我們1植物和我們的生活教案新人教版
- 員工培訓(xùn)課件服從
- 禮儀常識培訓(xùn)課件
- 面部手法培訓(xùn)課件
- 《水環(huán)境公共政策》課件
- 氨堿法純堿生產(chǎn)工藝概述
- 基礎(chǔ)化工行業(yè)深度:電解液新型鋰鹽材料之雙氟磺酰亞胺鋰(LiFSI)市場潛力可觀新型鋰鹽LiFSI國產(chǎn)化進(jìn)程加速
- 年產(chǎn)10000噸一次性自然降解環(huán)保紙漿模塑餐具自動化生產(chǎn)線技改項目環(huán)境影響報告表
- 實戰(zhàn)銷售培訓(xùn)講座(共98頁).ppt
- 測控電路第7章信號細(xì)分與辨向電路
- 哈爾濱工業(yè)大學(xué)信紙模版
- 氨的飽和蒸汽壓表
- 指揮中心大廳及機(jī)房裝修施工組織方案
- 餐飲店應(yīng)聘人員面試測評表
- APQP全套表格最新版(共98頁)
- 六年級上冊數(shù)學(xué)試題-天津河西區(qū)2018-2019學(xué)年度期末考試人教新課標(biāo)含答案
評論
0/150
提交評論