隨機(jī)變量的函數(shù)的數(shù)學(xué)期望PPT學(xué)習(xí)教案_第1頁
隨機(jī)變量的函數(shù)的數(shù)學(xué)期望PPT學(xué)習(xí)教案_第2頁
隨機(jī)變量的函數(shù)的數(shù)學(xué)期望PPT學(xué)習(xí)教案_第3頁
隨機(jī)變量的函數(shù)的數(shù)學(xué)期望PPT學(xué)習(xí)教案_第4頁
隨機(jī)變量的函數(shù)的數(shù)學(xué)期望PPT學(xué)習(xí)教案_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、會計(jì)學(xué)1隨機(jī)變量的函數(shù)的數(shù)學(xué)期望隨機(jī)變量的函數(shù)的數(shù)學(xué)期望解解的分布律的分布律先求先求2XY 2XY p4102p31pp 4p則有則有( )E Y42124)(10pppp 422212221)1(0pppp 421iiix p 第1頁/共13頁(1)(1)若若X是離散型隨機(jī)變量,且是離散型隨機(jī)變量,且 X 的的概率分布為概率分布為 ,iipxXP , 2 , 1 i.)()()( iiipxgXgEYE(2)(2)若若X是連續(xù)型隨機(jī)變量,且其概率密度是連續(xù)型隨機(jī)變量,且其概率密度為為 f( (x) ), 則則.d)()()()( xxfxgXgEYE則則第2頁/共13頁解解X- -2- -1

2、00.1P 10.20.30.4例例4.3 4.3 設(shè)隨機(jī)變量設(shè)隨機(jī)變量 X 的概率分布如下的概率分布如下: 求求)13( XE, ,2EX. . 41) 13() 13(iiipxXE 4122iiipxEX.14 . 043 . 012 . 021 . 05 .14 . 013 . 002 . 011 . 04 第3頁/共13頁解解例例4.4 4.4 設(shè)隨機(jī)變量設(shè)隨機(jī)變量 X 的概率密度為的概率密度為拉普拉斯分布拉普拉斯分布 ,|e21)(xxf x xxxfXEd)()( xxxde21|.0 xxfxXEd)()(22 xxxde21|2 02dexxx.2 第4頁/共13頁解解例例4

3、.5 4.5 游客乘電梯從底層到電視塔頂層觀光,電梯于游客乘電梯從底層到電視塔頂層觀光,電梯于每個(gè)整點(diǎn)的第每個(gè)整點(diǎn)的第5分鐘、分鐘、25分鐘和分鐘和 55分鐘從底層起行假分鐘從底層起行假設(shè)有一游客在早上設(shè)有一游客在早上8 8點(diǎn)的第點(diǎn)的第X分鐘到達(dá)底層等候電梯,且分鐘到達(dá)底層等候電梯,且X在在0,600,60上均勻分布,求該游客等候時(shí)間的數(shù)學(xué)期望上均勻分布,求該游客等候時(shí)間的數(shù)學(xué)期望 6055,655525,55255,2550,5XXXXXXXXY以以Y 表示游客的等候時(shí)間,則表示游客的等候時(shí)間,則故故 25550d601)25(d601)5()(xxxxYE 55256055(min)335

4、d601)65(d601)55(xxxx第5頁/共13頁(1) (1) 若若( (X, ,Y) )是離散型隨機(jī)變量,且其聯(lián)合分布律為是離散型隨機(jī)變量,且其聯(lián)合分布律為 ,ijjipyYxXP , 2 , 1, ji則則.),(),()( jiijjipyxgYXgEZE(2) (2) 若若(X, ,Y)是是連續(xù)連續(xù)型隨機(jī)變量型隨機(jī)變量,聯(lián)合概率密度為聯(lián)合概率密度為f(x, ,y),則則 yxyxfyxgYXgEZEdd),(),(),()(第6頁/共13頁0XY1 013130011013解解 23 ii jijEXx p 1110 0 00 0 11 0 1333 0EY 類類似似計(jì)計(jì)算算得

5、得, 0.E XY 第7頁/共13頁1 1xy 1312d123ln23xxxx.43 解解例例4.7 4.7 設(shè)隨機(jī)變量設(shè)隨機(jī)變量( (X, ,Y) )的聯(lián)合概率密度為的聯(lián)合概率密度為 其其他他 , 0 1,1 , 23),(23xxyxyxyxf. )1(),(XYEYE求求 xxyyxx131d23d yxyxfyYEdd),()( 13dln2123xxx第8頁/共13頁1 1xy xxyyxx1341d23d yxyxfxyXYEdd),(1)1( 1224d)1(12123xxxx 162d)11(43xxx.53)511(43 解解例例4.7 4.7 設(shè)隨機(jī)變量設(shè)隨機(jī)變量( (X

6、, ,Y) )的聯(lián)合概率密度為的聯(lián)合概率密度為 其其他他 , 0 1,1 , 23),(23xxyxyxyxf. )1(),(XYEYE求求第9頁/共13頁性質(zhì)性質(zhì) E( (C)=)=C,其中,其中C是常數(shù)。是常數(shù)。 性質(zhì)性質(zhì) 設(shè)設(shè)X、Y獨(dú)立,則獨(dú)立,則 E(XY)=E(X)E(Y);性質(zhì)性質(zhì) 若若k是常數(shù),則是常數(shù),則 E(kX)=kE(X);性質(zhì)性質(zhì) E(X1+X2) = E(X1)+E(X2); niiniiXX11)(EE:推廣推廣(諸諸Xi 獨(dú)立時(shí)獨(dú)立時(shí))注意注意:E(XY)=E(X)E(Y)不一定能推出不一定能推出X,Y 獨(dú)立獨(dú)立推廣:推廣:)(EE11 niiiniiiXkXk第

7、10頁/共13頁 一民航送客車載有一民航送客車載有20位旅客自機(jī)場開出位旅客自機(jī)場開出,旅旅客有客有10個(gè)車站可以下車個(gè)車站可以下車.如到達(dá)一個(gè)車站沒有旅客如到達(dá)一個(gè)車站沒有旅客下車就不停車下車就不停車. 以以X表示停車的次數(shù)表示停車的次數(shù), 求求E(X) (設(shè)每設(shè)每位旅客在各個(gè)車站下車是等可能的位旅客在各個(gè)車站下車是等可能的,并設(shè)各旅客是并設(shè)各旅客是否下車相互獨(dú)立否下車相互獨(dú)立).引入隨機(jī)變量引入隨機(jī)變量 站站無無人人下下車車第第站站有有人人下下車車第第iiXi, 0, 110, 2 , 1 , i則有則有1021XXXX 例例4.84.8解解由題意由題意, 有有第11頁/共13頁則有則有1021XXXX 由題意,由題意,有有,1090P20

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論