![《等腰三角形》公開課教學設計_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/22/968c7481-b32c-47b0-83b7-94f12d65abd1/968c7481-b32c-47b0-83b7-94f12d65abd11.gif)
![《等腰三角形》公開課教學設計_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/22/968c7481-b32c-47b0-83b7-94f12d65abd1/968c7481-b32c-47b0-83b7-94f12d65abd12.gif)
![《等腰三角形》公開課教學設計_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/22/968c7481-b32c-47b0-83b7-94f12d65abd1/968c7481-b32c-47b0-83b7-94f12d65abd13.gif)
![《等腰三角形》公開課教學設計_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/22/968c7481-b32c-47b0-83b7-94f12d65abd1/968c7481-b32c-47b0-83b7-94f12d65abd14.gif)
![《等腰三角形》公開課教學設計_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/22/968c7481-b32c-47b0-83b7-94f12d65abd1/968c7481-b32c-47b0-83b7-94f12d65abd15.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上等腰三角形公開課教學設計貴定縣第三中學 陳文普一、教材依據(jù) 人教版八年級上冊第十四章第14.3節(jié)二、設計思想 本課內(nèi)容在初中數(shù)學教學中起著比較重要的作用,它是對三角形的性質(zhì)的呈現(xiàn)。教材通過學生對等腰三角形的疊合操作,得出等腰三角形的軸對稱性,給出了等腰三角形的性質(zhì)1,并對性質(zhì)1進行了證明,從性質(zhì)1的證明過程中,得出等邊三角形性質(zhì)及等腰三角形性質(zhì)2,這里“等邊對等角是今后證明兩角相等常用方法之一,而等腰三角形的“三線合一”是今后證明兩條線段相等、兩個角相等及兩條直線互相垂直的重要依據(jù)。運用觀察、操作來領悟規(guī)律,以全等三角形為推理工具,在交流中突破難點。采用直觀教學發(fā)現(xiàn)法
2、和啟發(fā)誘導教學法,與學生實踐操作、合作探究。三、教學目標1、知識與能力目標:掌握等腰三角形的性質(zhì)及其兩個推論。 運用等腰三角形的性質(zhì)及其推論進行有關證明和計算。2、過程與方法目標:讓學生體驗等腰三角形是一個軸對稱性圖形。經(jīng)歷操作、發(fā)現(xiàn)、猜想、證明的過程,培養(yǎng)學生的邏輯思維能力。3、情感、態(tài)度、價值觀目標: 培養(yǎng)學生協(xié)作學習精神,使學生理解事物之間是相互聯(lián)系和運動變化,培養(yǎng)學生辯證唯物主義觀念。四、教學重點 等腰三角形的性質(zhì)定理及其證明五、教學難點“三線合一”的理解及例1的講解六、教學準備 長方形紙片、剪刀、自制等腰三角形紙片七、教學過程(一)、創(chuàng)設情景,引入新知 活動1:請同學們把一張長方形的
3、紙片對折,剪去(或用刀子裁)一個角,再把它展開,得到的是什么樣三角形?教師示范操作,然后學生跟著動手操作,觀察得出結(jié)論:“剪刀剪過的兩條邊是相等的;剪出的圖形是等腰三角形”,根據(jù)學生回答,板書:等腰三角形 師生共同回顧:有兩條邊相等的三角形,叫做等腰三角形,相等的兩邊叫做腰,另一條邊叫做底,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角 教師提問:剪出的三角形是軸對稱圖形嗎?你能發(fā)現(xiàn)這個三角形有哪些特點嗎?說一說你的猜想學生思考并發(fā)表自已的看法,教師提出本節(jié)課所要解決的問題 師生歸納:等腰三角形是軸對稱圖形,底邊上的中線所在的直線是它的對稱軸(板書) 教師說明:對稱軸是一條直線,而三角形的中線是
4、線段,因此不能說等腰三角形底邊上的中線是它的對稱軸。(二)、合作交流,探索新知活動2:教師出示剛才剪下的等腰三角形紙片,標上字母如圖所示: 把邊AB疊合到邊AC上,這時點B與C重合,并出現(xiàn)折痕AD,觀察圖形,ADB與ADC有什么關系?圖中哪些線段或角相等?AD與BC垂直嗎?為什么? 學生回答:ADB與ADC重合,B=C,BAD=CAD,ADB=CDA,BD=CD 活動3:由上面的性質(zhì)我們可以得到等腰三角形如下性質(zhì): 性質(zhì)1:等腰三角形的兩個底角相等,簡稱:等邊對等角(板書) 教師提問:這個命題的題設是什么?結(jié)論是什么?學生可結(jié)合圖形回答(板書)已知:在ABC中,AB=AC,求證:B
5、=C 說明:將等腰三角形寫成已知時,通常寫成“在ABC中,AB=AC”而不寫成“等腰”兩個字 教師引等學生回答:要證兩個角相等可以轉(zhuǎn)化前面所學過的三角形全等,而圖形只有一個三角形,如何添加輔助線使它轉(zhuǎn)化為兩個三角形? 通過剛才的折疊等腰三角形的實驗,很容易得到輔助線,作高AD或作頂角的平分線AD,可由兩位學生板演,教師巡視,并給訂正。 同學們思考一下,還有沒有其它輔助線的作法,教師可作提示:作中線AD,由學生口答,或者指導學生看課本證明。 教師歸納等腰三角形性質(zhì)1,并指出它的幾何符號語言的書寫: 如上圖: AB=AC(已知) B=C(等邊對等角)教師提出問題:練習1(口答)1、 等
6、腰直角三角形每一個銳角的度數(shù)是多少度? 2、 如果等腰三角形的底角等于40°,那么它的頂角的度數(shù)是多少? 3、如果等腰三角形的頂角是40°,那么它的底角的度數(shù)是多少? 1、 如果等腰三角形的一個角是40°,那么其它的兩個角各是多少度?2、 如果等腰三角形的一個內(nèi)角是120°,則其它的兩個角各是多少度? 3、 等邊三角形各內(nèi)角有什么關系?各等于多少度? 要求學生完成教師提出的問題,教師歸納:(1)等腰三角形中頂角與底角的關系:頂角十 2 ×底角=180°(2)推論:等邊三角形三個內(nèi)角相等,
7、每一個內(nèi)角都等于60°(板書) 教師與學生合作分析,口述(2)的證明過程。 活動4:提出問題:從性質(zhì)1的證明過程可以知道,BD=CD,ADB=ADC=90°,由此,你能得出等腰三角形還具有什么性質(zhì)? 讓學生運用數(shù)學語言表述所發(fā)現(xiàn)的規(guī)律,師生共同歸納得出: 性質(zhì)2 等腰三角形的頂角的平分線垂直平分底邊(板書) 即:等腰三角形頂角的平分線、底邊上的中線和底邊上的高互相重合三線合一(板書) 活動5:教師出示課本例1(小黑板顯示) 例1 如圖在ABC中,AB=AC,BAC=120°,點D、E是底邊的兩點,且BD=AD,CE=AE,求DAE的度數(shù) 分析例1,剖析推理方法及依據(jù),提出討論問題,引導學生思考,根據(jù)學生回答教師板書例1過程,解略(三)、鞏固練習,強化新知練習2:(出示小黑板) 如圖,在ABC中,AB=AC(1)ADBD _ = _; _ = _(等腰三角形底邊上的高與_、_重合)(2)AD是中線_ _;_= _(等腰三角形底邊上的中線與_、_重合) (3)AD是角平分線_ _;_= _(等腰三角形頂角的平分線與_、_重合)(四)、師生互動,總結(jié)新知請同學們回顧本節(jié)課所學的內(nèi)容,有哪些收獲?師生活動:學生思考后,用自己語言歸納,教師適時點評,并關注以下幾個問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)保作文之關于環(huán)保的研究報告
- 2025年中國直驅(qū)式風電系統(tǒng)行業(yè)市場發(fā)展現(xiàn)狀及投資潛力預測報告
- 中國兒童踩镲架項目投資可行性研究報告
- 貴州肇興侗寨非遺的社區(qū)化保護研究
- 校園活動申請書
- 現(xiàn)代教育技術(shù)對教師教育理念的影響
- 離婚后改名申請書
- 電子產(chǎn)品的智能化設計與辦公應用案例
- 2021-2026年中國新能源汽車電機行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃研究報告
- 2025年125t冷室壓鑄機項目投資可行性研究分析報告
- 新版抗拔樁裂縫及強度驗算計算表格(自動版)
- API SPEC 5DP-2020鉆桿規(guī)范
- 日影朝向及長短
- 創(chuàng)新思維課件(完整版)
- DB34∕T 4161-2022 全過程工程咨詢服務管理規(guī)程
- 注塑成型工藝參數(shù)知識講解
- 安全生產(chǎn)專業(yè)化管理
- 初中生成長檔案模板
- 教育系統(tǒng)績效工資分配方案(共6頁)
- GB_T 17468-2019 電力變壓器選用導則(高清正版)
- 中頻爐故障總結(jié)
評論
0/150
提交評論