版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高階導(dǎo)數(shù)的運(yùn)算法則二、高階導(dǎo)數(shù)的運(yùn)算法則二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念一、高階導(dǎo)數(shù)的概念機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 第二章 一、高階導(dǎo)數(shù)的概念一、高階導(dǎo)數(shù)的概念)(tss 速度即sv加速度,ddtsv tvadd)dd(ddtst即)( sa引例引例:變速直線運(yùn)動(dòng)機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 定義定義. 若函數(shù))(xfy 的導(dǎo)數(shù))(xfy可導(dǎo),或,dd22xy即)( yy或)dd(dddd22xyxxy類似地 , 二階導(dǎo)數(shù)的導(dǎo)數(shù)稱為三階導(dǎo)數(shù) ,1n階導(dǎo)數(shù)的導(dǎo)數(shù)稱為 n 階導(dǎo)數(shù) ,y ,)4(y)(,ny或,dd33xy,dd44xynnxydd,)(xf的二階導(dǎo)數(shù)
2、二階導(dǎo)數(shù) , 記作y )(xf 的導(dǎo)數(shù)為依次類推 ,分別記作則稱機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 設(shè),2210nnxaxaxaay求.)(ny解解:1ayxa221nnxan 212 ayxa3232) 1(nnxann依次類推 ,nnany!)(233xa例例1.思考思考: 設(shè), )(為任意常數(shù)xy ?)(nynnxnx) 1()2)(1()()(問(wèn)可得機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 nx)1 ( ,3xaeay 例例2. 設(shè)求解解:特別有:解解:! ) 1( n規(guī)定 0 ! = 1思考思考:,xaey .)(ny,xaeay ,2xaeay xanneay)(xnxee)()(例例3
3、. 設(shè), )1(lnxy求.)(ny,11xy,)1 (12xy ,)1 (21) 1(32xy )(ny1) 1(n, )1(lnxy)(nyxy11 ynxn)1 (! ) 1(2)1 (1x,機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 例例4. 設(shè),sinxy 求.)(ny解解: xycos)sin(2x)cos(2 xy)sin(22x)2sin(2x)2cos(2 xy)3sin(2x一般地 ,xxnsin()(sin)(類似可證:xxncos()(cos)()2n)2n機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 例例5 . 設(shè)bxeyxasin解解:bxaeyxasin)cossin(xbbxba
4、exa求為常數(shù) , ),(ba.)(nybxbexacos)cossin(222222xbbabxbbaabacossinxae)sin(22bxba)arctan(ab22bay )sin(bxaexa222)()(nnbayxaeba22)arctan(ab)2sin(22bxba)sin(nbxexa)cos(bxbexa機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 例例6. 設(shè),3)(23xxxxf求使)0()(nf存在的最高分析分析: )(xf0 x,43x0 x,23xxxfx02lim)0(300 xxfx04lim)0(3000 x0 x)(xf,122x,62x )0(fxxx206l
5、im0 )0(fxxx2012lim0 )(xf但是,12)0( f,24)0( f)0(f 不存在 ._n2又0 x,24x0 x,12x階數(shù)機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 二、高階導(dǎo)數(shù)的運(yùn)算法則二、高階導(dǎo)數(shù)的運(yùn)算法則都有 n 階導(dǎo)數(shù) , 則)()(. 1nvu )()(nnvu)()(. 2nuC)(nuC(C為常數(shù))()(. 3nvuvun)(!2) 1( nn!) 1() 1(kknnn vun)2()()(kknvu)(nvu萊布尼茲萊布尼茲(Leibniz) 公式公式)(xuu 及)(xvv 設(shè)函數(shù)vunn) 1(推導(dǎo) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 vu 3)(vuvuvu)(
6、 vu)(vuvuvuvu 2vu )( vuvu vu 3vu 用數(shù)學(xué)歸納法可證萊布尼茲公式萊布尼茲公式成立 .機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 例例7. ,22xexy 求.)20(y解解: 設(shè),22xveux則xkkeu2)(2,2xv ,2 v0)(kv代入萊布尼茲公式 , 得)20(yxe22022xxe219220 x2!219202xe2202)9520(2xxxe2182)20,2,1(k)20,3(k機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 0!2) 1() 1(nynn)(nyn例例8. 設(shè),arctanxy 求).0()(ny解解:,112xy即1)1 (2yx用萊布尼茲公式
7、求 n 階導(dǎo)數(shù))1 (2xx22令,0 x得)0() 1()0() 1() 1(nnynny),2, 1(n由,0)0(y得,0)0( y,0)0()4(y,)0() 12( my)0() 12(2) 12(mymm)0(! )2() 1(ymm0)0()2(my ) 1(ny12, ! )2() 1(2,0)0()(mnmmnymn即), 2, 1 , 0(m由, 1)0( y得)0(! )2() 1()0() 12(ymymm機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 內(nèi)容小結(jié)內(nèi)容小結(jié)(1) 逐階求導(dǎo)法(2) 利用歸納法(3) 間接法 利用已知的高階導(dǎo)數(shù)公式(4) 利用萊布尼茲公式高階導(dǎo)數(shù)的求法)
8、(1nxa1)(!) 1(nnxan)(1nxa1)(!nxan如,機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 思考與練習(xí)思考與練習(xí)xy1211)()1 (!) 1(2nnnxnyxxxy11123,)1 (!1)(nxnynn1. 如何求下列函數(shù)的 n 階導(dǎo)數(shù)?xxy11) 1 (xxy1)2(3解解: 解解: 機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 2312xxy1121xxy11)() 1(1)2(1!) 1(nnnnxxny(3)12) 1)(2(1xBxAxx提示提示: 令)2(xA原式2x) 1(xB原式1x11機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 xxy66cossin)4(3232)(cos
9、)(sinxxyxxxx4224coscossinsin222)cos(sinxx x2sin431283)(nyn433ba)(ba )(22babax4cos8385)4cos(2nx 22cos1sin2xx22cossin3解解:機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 1)( !nxfn2. (填空題) (1) 設(shè),cos)23()(1622xnxxxf則)2()(nf)(xf16cos) 1(2xxn)()(xfn16cos) 1(2xxn提示提示:各項(xiàng)均含因子 ( x 2 )nx)2( ! n22!n(2) 已知)(xf任意階可導(dǎo), 且2n時(shí))()(xfn提示提示:,)()(2xfxf則當(dāng) )(xf)()(2xfxf3)( !2xf )(xf)()(3!22xfxf4)( !3xf機(jī)動(dòng) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 3. 試從 yyx1dd導(dǎo)出.)(dd322yyyx 解:解:yxyyxdddddd22 y1xddyxdd2)(yy y13)(yy 同樣可求33ddyx(見(jiàn) P101 題4 ) 作業(yè)作業(yè)第四節(jié) 目錄 上頁(yè) 下頁(yè) 返回 結(jié)束 P101 1 (9) , (12) ; 3 ; 4 (2) ; 8 (2) , (3) ; 9 (2) , (3)解解: 設(shè))(sin2xfxy 求,y 其中 f 二階可導(dǎo). y yxxfxcos)(sin2)(sin2xf備用題備用題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年食品級(jí)原材料安全運(yùn)輸與購(gòu)銷保障協(xié)議3篇
- 2024廣州二手房購(gòu)房合同
- FBM模式2024年度汽車租賃合同
- 2024年賽事組織與執(zhí)行合同
- 2024年簡(jiǎn)化版鋼管交易協(xié)議范例一
- 2024年財(cái)產(chǎn)抵押貸款合同
- 2024年飲料分銷合作伙伴協(xié)議3篇
- 2024智能交通系統(tǒng)技術(shù)開(kāi)發(fā)與實(shí)施合同
- 細(xì)胞養(yǎng)護(hù)知識(shí)培訓(xùn)課件
- 2025年度生態(tài)住宅區(qū)綠色物業(yè)綜合服務(wù)協(xié)議3篇
- 建材行業(yè)綠色建筑材料配送方案
- 2024年行政執(zhí)法人員執(zhí)法資格知識(shí)考試題庫(kù)(附含答案)
- 西那卡塞治療甲旁亢
- 無(wú)人駕駛 物流行業(yè)市場(chǎng)調(diào)研分析報(bào)告
- 電力工程施工人員培訓(xùn)方案
- 3-U9C操作培訓(xùn)-MRP基礎(chǔ)
- 8年級(jí)上冊(cè)(人教版)物理電子教材-初中8~9年級(jí)物理電子課本
- 2024至2030年中國(guó)銅制裝飾材料行業(yè)投資前景及策略咨詢研究報(bào)告
- 中金公司在線測(cè)評(píng)真題
- 項(xiàng)目資金管理統(tǒng)籌實(shí)施方案
- 2024供應(yīng)商大會(huì)策劃方案
評(píng)論
0/150
提交評(píng)論