八年級數(shù)學(xué)下人教版教案全冊_第1頁
八年級數(shù)學(xué)下人教版教案全冊_第2頁
八年級數(shù)學(xué)下人教版教案全冊_第3頁
八年級數(shù)學(xué)下人教版教案全冊_第4頁
八年級數(shù)學(xué)下人教版教案全冊_第5頁
已閱讀5頁,還剩194頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第十六章 二次根式161.1 二次根式教學(xué)內(nèi)容 二次根式的概念及其運(yùn)用教學(xué)目標(biāo) 理解二次根式的概念,并利用(a0)的意義解答具體題目 提出問題,根據(jù)問題給出概念,應(yīng)用概念解決實(shí)際問題教學(xué)重難點(diǎn)關(guān)鍵 1重點(diǎn):形如(a0)的式子叫做二次根式的概念; 2難點(diǎn)及關(guān)鍵:利用“(a0)”解決具體問題教學(xué)過程備注一、復(fù)習(xí)引入 (學(xué)生活動)請同學(xué)們獨(dú)立完成下列課本P2的思考題:二、探索新知 很明顯、,都是一些正數(shù)的算術(shù)平方根像這樣一些正數(shù)的算術(shù)平方根的式子,我們就把它稱二次根式因此,一般地,我們把形如(a0)的式子叫做二次根式,“”稱為二次根號 (學(xué)生活動)議一議: 1-1有算術(shù)平方根嗎? 20的算術(shù)平方根是

2、多少? 3當(dāng)a0)、-、(x0,y0) 分析:二次根式應(yīng)滿足兩個條件:第一,有二次根號“”;第二,被開方數(shù)是正數(shù)或0 解:二次根式有:、(x0)、-、(x0,y0);不是二次根式的有:、 例2當(dāng)x是多少時,在實(shí)數(shù)范圍內(nèi)有意義? 分析:由二次根式的定義可知,被開方數(shù)一定要大于或等于0,所以3x-10,才能有意義 解:由3x-10,得:x 當(dāng)x時,在實(shí)數(shù)范圍內(nèi)有意義 三、鞏固練習(xí) 教材P5練習(xí)1、2、3 四、歸納小結(jié)(學(xué)生活動,老師點(diǎn)評) 本節(jié)課要掌握: 1形如(a0)的式子叫做二次根式,“”稱為二次根號 2要使二次根式在實(shí)數(shù)范圍內(nèi)有意義,必須滿足被開方數(shù)是非負(fù)數(shù) 五、布置作業(yè)1教材P5 1,2,

3、3,42選用課時作業(yè)設(shè)計(jì)16.1.2 二次根式(2)教學(xué)內(nèi)容 1(a0)是一個非負(fù)數(shù); 2()2=a(a0) 教學(xué)目標(biāo) 理解(a0)是一個非負(fù)數(shù)和()2=a(a0),并利用它們進(jìn)行計(jì)算和化簡 通過復(fù)習(xí)二次根式的概念,用邏輯推理的方法推出(a0)是一個非負(fù)數(shù),用具體數(shù)據(jù)結(jié)合算術(shù)平方根的意義導(dǎo)出()2=a(a0);最后運(yùn)用結(jié)論嚴(yán)謹(jǐn)解題 教學(xué)重難點(diǎn)關(guān)鍵 1重點(diǎn):(a0)是一個非負(fù)數(shù);()2=a(a0)及其運(yùn)用 2難點(diǎn)、關(guān)鍵:用分類思想的方法導(dǎo)出(a0)是一個非負(fù)數(shù);用探究的方法導(dǎo)出()2=a(a0)教學(xué)過程備注一、復(fù)習(xí)引入 (學(xué)生活動)口答 1什么叫二次根式? 2當(dāng)a0時,叫什么?當(dāng)a0時,有意義嗎

4、? 老師點(diǎn)評(略) 二、探究新知 議一議:(學(xué)生分組討論,提問解答) (a0)是一個什么數(shù)呢? 老師點(diǎn)評:根據(jù)學(xué)生討論和上面的練習(xí),我們可以得出 (a0)是一個非負(fù)數(shù) 做一做:根據(jù)算術(shù)平方根的意義填空:()2=_;()2=_;()2=_;()2=_;()2=_;()2=_;()2=_ 老師點(diǎn)評:是4的算術(shù)平方根,根據(jù)算術(shù)平方根的意義,是一個平方等于4的非負(fù)數(shù),因此有()2=4 同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以()2=a(a0) 例1 計(jì)算 1()2 2(3)2 3()2 4()2 分析:我們可以直接利用()2=a(a0)的結(jié)論解題解:()2 =

5、,(3)2 =32()2=325=45,()2=,()2= 三、鞏固練習(xí) 計(jì)算下列各式的值:()2 ()2 ()2 ()2 (4)2 四、歸納小結(jié) 本節(jié)課應(yīng)掌握: 1(a0)是一個非負(fù)數(shù); 2()2=a(a0);反之:a=()2(a0) 五、布置作業(yè) 1教材P5 5,6,7,82選用課時作業(yè)設(shè)計(jì)16.1 二次根式(3)教學(xué)內(nèi)容 a(a0) 教學(xué)目標(biāo) 理解=a(a0)并利用它進(jìn)行計(jì)算和化簡 通過具體數(shù)據(jù)的解答,探究=a(a0),并利用這個結(jié)論解決具體問題 教學(xué)重難點(diǎn)關(guān)鍵 1重點(diǎn):a(a0) 2難點(diǎn):探究結(jié)論 3關(guān)鍵:講清a0時,a才成立教學(xué)過程備注一、復(fù)習(xí)引入 老師口述并板收上兩節(jié)課的重要內(nèi)容;

6、 1形如(a0)的式子叫做二次根式; 2(a0)是一個非負(fù)數(shù); 3()2a(a0) 那么,我們猜想當(dāng)a0時,=a是否也成立呢?下面我們就來探究這個問題 二、探究新知 (學(xué)生活動)填空: =_;=_;=_; =_;=_;=_ (老師點(diǎn)評):根據(jù)算術(shù)平方根的意義,我們可以得到: =2;=0.01;=;=;=0;= 因此,一般地:=a(a0) 例1 化簡 (1) (2) (3) (4)分析:因?yàn)椋?)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可運(yùn)用=a(a0)去化簡解:(1)=3 (2)=4 (3)=5 (4)=3 三、鞏固練習(xí) 教材P4練習(xí)2 四、歸納小結(jié)

7、 本節(jié)課應(yīng)掌握:=a(a0)及其運(yùn)用,同時理解當(dāng)a0時,a的應(yīng)用拓展 五、布置作業(yè) 1教材P5習(xí)題161 3、4、6、82選作課時作業(yè)設(shè)計(jì)162 二次根式的乘除教學(xué)內(nèi)容 (a0,b0),反之=(a0,b0)及其運(yùn)用 教學(xué)目標(biāo) 理解(a0,b0),=(a0,b0),并利用它們進(jìn)行計(jì)算和化簡 由具體數(shù)據(jù),發(fā)現(xiàn)規(guī)律,導(dǎo)出(a0,b0)并運(yùn)用它進(jìn)行計(jì)算;利用逆向思維,得出=(a0,b0)并運(yùn)用它進(jìn)行解題和化簡 教學(xué)重難點(diǎn)關(guān)鍵 重點(diǎn):(a0,b0),=(a0,b0)及它們的運(yùn)用 難點(diǎn):發(fā)現(xiàn)規(guī)律,導(dǎo)出(a0,b0)關(guān)鍵:要講清(a0,b、0),反過來=(a0,b0)及利用它們進(jìn)行計(jì)算和化簡教學(xué)目標(biāo) 理解=

8、(a0,b0)和=(a0,b0)及利用它們進(jìn)行運(yùn)算 利用具體數(shù)據(jù),通過學(xué)生練習(xí)活動,發(fā)現(xiàn)規(guī)律,歸納出除法規(guī)定,并用逆向思維寫出逆向等式及利用它們進(jìn)行計(jì)算和化簡教學(xué)重難點(diǎn)關(guān)鍵 1重點(diǎn):理解=(a0,b0),=(a0,b0)及利用它們進(jìn)行計(jì)算和化簡 2難點(diǎn)關(guān)鍵:發(fā)現(xiàn)規(guī)律,歸納出二次根式的除法規(guī)定教學(xué)過程備注一、復(fù)習(xí)引入 (學(xué)生活動)請同學(xué)們完成下列各題: 1寫出二次根式的乘法規(guī)定及逆向等式 2填空 (1)=_,=_; (2)=_,=_; (3)=_,=_; (4)=_,=_規(guī)律:_;_;_;_ 3利用計(jì)算器計(jì)算填空: (1)=_,(2)=_,(3)=_,(4)=_ 規(guī)律:_;_;_;_。 每組推薦

9、一名學(xué)生上臺闡述運(yùn)算結(jié)果 (老師點(diǎn)評) 二、探索新知 剛才同學(xué)們都練習(xí)都很好,上臺的同學(xué)也回答得十分準(zhǔn)確,根據(jù)大家的練習(xí)和回答,我們可以得到: 一般地,對二次根式的除法規(guī)定:=(a0,b0),反過來,=(a0,b0) 下面我們利用這個規(guī)定來計(jì)算和化簡一些題目 例1計(jì)算:(1) (2) (3) (4) 分析:上面4小題利用=(a0,b0)便可直接得出答案解:(1)=2 (2)=2(3)=2(4)=2 例2化簡: (1) (2) (3) (4) 分析:直接利用=(a0,b0)就可以達(dá)到化簡之目的解:(1)= (2)= (3)= (4)= 三、鞏固練習(xí) 教材P10 練習(xí)1 四、歸納小結(jié) 本節(jié)課要掌握

10、=(a0,b0)和=(a0,b0)及其運(yùn)用 五、布置作業(yè) 1習(xí)題162 2、7、8、9 2選用課時作業(yè)設(shè)計(jì)二次根式的乘除(3)教學(xué)內(nèi)容 最簡二次根式的概念及利用最簡二次根式的概念進(jìn)行二次根式的化簡運(yùn)算教學(xué)目標(biāo) 理解最簡二次根式的概念,并運(yùn)用它把不是最簡二次根式的化成最簡二次根式 通過計(jì)算或化簡的結(jié)果來提煉出最簡二次根式的概念,并根據(jù)它的特點(diǎn)來檢驗(yàn)最后結(jié)果是否滿足最簡二次根式的要求重難點(diǎn)關(guān)鍵 1重點(diǎn):最簡二次根式的運(yùn)用 2難點(diǎn)關(guān)鍵:會判斷這個二次根式是否是最簡二次根式教學(xué)過程備注一、復(fù)習(xí)引入 (學(xué)生活動)請同學(xué)們完成下列各題(請三位同學(xué)上臺板書) 1計(jì)算(1),(2),(3) 老師點(diǎn)評:=,=,

11、= 2現(xiàn)在我們來看本章引言中的問題:如果兩個電視塔的高分別是h1km,h2km,那么它們的傳播半徑的比是_它們的比是二、探索新知 觀察上面計(jì)算題1的最后結(jié)果,可以發(fā)現(xiàn)這些式子中的二次根式有如下兩個特點(diǎn): 1被開方數(shù)不含分母; 2被開方數(shù)中不含能開得盡方的因數(shù)或因式 我們把滿足上述兩個條件的二次根式,叫做最簡二次根式 那么上題中的比是否是最簡二次根式呢?如果不是,把它們化成最簡二次根式 學(xué)生分組討論,推薦34個人到黑板上板書老師點(diǎn)評:不是=. 例1(1) ; (2) ; (3) 例2如圖,在RtABC中,C=90,AC=2.5cm,BC=6cm,求AB的長 解:因?yàn)锳B2=AC2+BC2 所以A

12、B=6.5(cm) 因此AB的長為6.5cm 三、鞏固練習(xí) 練習(xí)2、3 四、歸納小結(jié) 本節(jié)課應(yīng)掌握:最簡二次根式的概念及其運(yùn)用 五、布置作業(yè) 1習(xí)題162 3、102選用課時作業(yè)設(shè)計(jì)二次根式的加減(1)教學(xué)內(nèi)容 二次根式的加減 教學(xué)目標(biāo) 理解和掌握二次根式加減的方法 先提出問題,分析問題,在分析問題中,滲透對二次根式進(jìn)行加減的方法的理解再總結(jié)經(jīng)驗(yàn),用它來指導(dǎo)根式的計(jì)算和化簡 重難點(diǎn)關(guān)鍵 1重點(diǎn):二次根式化簡為最簡根式 2難點(diǎn)關(guān)鍵:會判定是否是最簡二次根式教學(xué)過程備注一、復(fù)習(xí)引入 學(xué)生活動:計(jì)算下列各式 (1)2x+3x; (2)2x2-3x2+5x2; (3)x+2x+3y; (4)3a2-2

13、a2+a3 教師點(diǎn)評:上面題目的結(jié)果,實(shí)際上是我們以前所學(xué)的同類項(xiàng)合并同類項(xiàng)合并就是字母不變,系數(shù)相加減 二、探索新知 學(xué)生活動:計(jì)算下列各式(1)2+3 (2)2-3+5 (3)+2+3 (4)3-2+ 老師點(diǎn)評: (1)如果我們把當(dāng)成x,不就轉(zhuǎn)化為上面的問題嗎? 2+3=(2+3)=5 (2)把當(dāng)成y; 2-3+5=(2-3+5)=4=8 (3)把當(dāng)成z; +2+ =2+2+3=(1+2+3)=6 (4)看為x,看為y 3-2+ =(3-2)+ =+ 因此,二次根式的被開方數(shù)相同是可以合并的,如2及表面上看是不相同的,但它們可以合并嗎?可以的 (板書)3+=3+2=5 3+=3+3=6 所

14、以,二次根式加減時,可以先將二次根式化成最簡二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并 例1計(jì)算 (1)+ (2)+ 分析:第一步,將不是最簡二次根式的項(xiàng)化為最簡二次根式;第二步,將相同的最簡二次根式進(jìn)行合并 解:(1)+=2+3=(2+3)=5 (2)+=4+8=(4+8)=12 例2計(jì)算 (1)3-9+3 (2)(+)+(-) 解:(1)3-9+3=12-3+6=(12-3+6)=15 (2)(+)+(-)=+- =4+2+2-=6+ 三、鞏固練習(xí) 教材P13 練習(xí)1、2 四、歸納小結(jié) 本節(jié)課應(yīng)掌握:(1)不是最簡二次根式的,應(yīng)化成最簡二次根式;(2)相同的最簡二次根式進(jìn)行合并 五、布置

15、作業(yè) 1習(xí)題163 1、22選作課時作業(yè)設(shè)計(jì)二次根式的加減(2)教學(xué)內(nèi)容 利用二次根式化簡的數(shù)學(xué)思想解應(yīng)用題 教學(xué)目標(biāo) 運(yùn)用二次根式、化簡解應(yīng)用題 通過復(fù)習(xí),將二次根式化成被開方數(shù)相同的最簡二次根式,進(jìn)行合并后解應(yīng)用題 重難點(diǎn)關(guān)鍵講清如何解答應(yīng)用題既是本節(jié)課的重點(diǎn),又是本節(jié)課的難點(diǎn)、關(guān)鍵點(diǎn)教學(xué)過程備注一、復(fù)習(xí)引入 上節(jié)課,我們已經(jīng)講了二次根式如何加減的問題,我們把它歸為兩個步驟:第一步,先將二次根式化成最簡二次根式;第二步,再將被開方數(shù)相同的二次根式進(jìn)行合并,下面我們講三道例題以做鞏固二、探索新知例1如圖所示的RtABC中,B=90,點(diǎn)P從點(diǎn)B開始沿BA邊以1厘米/秒的速度向點(diǎn)A移動;同時,點(diǎn)

16、Q也從點(diǎn)B開始沿BC邊以2厘米/秒的速度向點(diǎn)C移動問:幾秒后PBQ的面積為35平方厘米?(結(jié)果用最簡二次根式表示) 分析:設(shè)x秒后PBQ的面積為35平方厘米,那么PB=x,BQ=2x,根據(jù)三角形面積公式就可以求出x的值 解:設(shè)x 后PBQ的面積為35平方厘米 則有PB=x,BQ=2x 依題意,得:x2x=35 x2=35 x= 所以秒后PBQ的面積為35平方厘米 答:秒后PBQ的面積為35平方厘米 例2要焊接如圖所示的鋼架,大約需要多少米鋼材(精確到0.1m)?分析:此框架是由AB、BC、BD、AC組成,所以要求鋼架的鋼材,只需知道這四段的長度 解:由勾股定理,得 AB=2 BC= 所需鋼材長

17、度為 AB+BC+AC+BD =2+5+2 =3+7 32.24+713.7(m) 答:要焊接一個如圖所示的鋼架,大約需要13.7m的鋼材 三、鞏固練習(xí) 教材練習(xí)3 四、歸納小結(jié) 本節(jié)課應(yīng)掌握運(yùn)用最簡二次根式的合并原理解決實(shí)際問題 五、布置作業(yè) 1習(xí)題163 72選用課時作業(yè)設(shè)計(jì)二次根式的加減(3)教學(xué)內(nèi)容 含有二次根式的單項(xiàng)式及單項(xiàng)式相乘、相除;多項(xiàng)式及單項(xiàng)式相乘、相除;多項(xiàng)式及多項(xiàng)式相乘、相除;乘法公式的應(yīng)用 教學(xué)目標(biāo) 含有二次根式的式子進(jìn)行乘除運(yùn)算和含有二次根式的多項(xiàng)式乘法公式的應(yīng)用 復(fù)習(xí)整式運(yùn)算知識并將該知識運(yùn)用于含有二次根式的式子的乘除、乘方等運(yùn)算 重難點(diǎn)關(guān)鍵 重點(diǎn):二次根式的乘除、

18、乘方等運(yùn)算規(guī)律;難點(diǎn)關(guān)鍵:由整式運(yùn)算知識遷移到含二次根式的運(yùn)算教學(xué)過程備注一、復(fù)習(xí)引入 學(xué)生活動:請同學(xué)們完成下列各題: 1計(jì)算 (1)(2x+y)zx (2)(2x2y+3xy2)xy 2計(jì)算 (1)(2x+3y)(2x-3y) (2)(2x+1)2+(2x-1)2 老師點(diǎn)評:這些內(nèi)容是對八年級上冊整式運(yùn)算的再現(xiàn)它主要有(1)單項(xiàng)式單項(xiàng)式;(2)單項(xiàng)式多項(xiàng)式;(3)多項(xiàng)式單項(xiàng)式;(4)完全平方公式;(5)平方差公式的運(yùn)用 二、探索新知 如果把上面的x、y、z改寫成二次根式呢?以上的運(yùn)算規(guī)律是否仍成立呢?仍成立 整式運(yùn)算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當(dāng)然也可以代

19、表二次根式,所以,整式中的運(yùn)算規(guī)律也適用于二次根式 例1計(jì)算: (1)(+) (2)(4-3)2 分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運(yùn)算規(guī)律,所以直接可用整式的運(yùn)算規(guī)律 解:(1)(+)=+ =+=3+2 解:(4-3)2=42-32 =2- 例2計(jì)算 (1)(+6)(3-) (2)(+)(-) 分析:剛才已經(jīng)分析,二次根式的多項(xiàng)式乘以多項(xiàng)式運(yùn)算在乘法公式運(yùn)算中仍然成立 解:(1)(+6)(3-) =3-()2+18-6 =13-3 (2)(+)(-)=()2-()2 =10-7=3 三、鞏固練習(xí) 課本練習(xí)P14 1、2 四、歸納小結(jié) 本節(jié)課應(yīng)掌握二次根式的乘、除、乘方等運(yùn)算 五、布置

20、作業(yè) 1習(xí)題163 8、9 2選用課時作業(yè)設(shè)計(jì)171 勾股定理(一)一、教學(xué)目的1了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會用面積法證明勾股定理。2培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識和能力。3介紹我國古代在勾股定理研究方面所取得的成就,激發(fā)學(xué)生的愛國熱情,促其勤奮學(xué)習(xí)。二、重點(diǎn)、難點(diǎn)1重點(diǎn):勾股定理的內(nèi)容及證明。2難點(diǎn):勾股定理的證明。三、例題的意圖分析例1(補(bǔ)充)通過對定理的證明,讓學(xué)生確信定理的正確性;通過拼圖,發(fā)散學(xué)生的思維,鍛煉學(xué)生的動手實(shí)踐能力;這個古老的精彩的證法,出自我國古代無名數(shù)學(xué)家之手。激發(fā)學(xué)生的民族自豪感,和愛國情懷。例2使學(xué)生明確,圖形經(jīng)過割補(bǔ)拼接后,只要沒有重疊

21、,沒有空隙,面積不會改變。進(jìn)一步讓學(xué)生確信勾股定理的正確性。教學(xué)過程備注四、課堂引入目前世界上許多科學(xué)家正在試圖尋找其他星球的“人”,為此向宇宙發(fā)出了許多信號,如地球上人類的語言、音樂、各種圖形等。我國數(shù)學(xué)家華羅庚曾建議,發(fā)射一種反映勾股定理的圖形,如果宇宙人是“文明人”,那么他們一定會識別這種語言的。這個事實(shí)可以說明勾股定理的重大意義。尤其是在兩千年前,是非常了不起的成就。讓學(xué)生畫一個直角邊為3cm和4cm的直角ABC,用刻度尺量出AB的長。以上這個事實(shí)是我國古代3000多年前有一個叫商高的人發(fā)現(xiàn)的,他說:“把一根直尺折成直角,兩段連結(jié)得一直角三角形,勾廣三,股修四,弦隅五?!边@句話意思是說

22、一個直角三角形較短直角邊(勾)的長是3,長的直角邊(股)的長是4,那么斜邊(弦)的長是5。再畫一個兩直角邊為5和12的直角ABC,用刻度尺量AB的長。你是否發(fā)現(xiàn)32+42及52的關(guān)系,52+122和132的關(guān)系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。對于任意的直角三角形也有這個性質(zhì)嗎?五、例習(xí)題分析例1(補(bǔ)充)已知:在ABC中,C=90,A、B、C的對邊為a、b、c。求證:a2b2=c2。分析:讓學(xué)生準(zhǔn)備多個三角形模型,最好是有顏色的吹塑紙,讓學(xué)生拼擺不同的形狀,利用面積相等進(jìn)行證明。拼成如圖所示,其等量關(guān)系為:4S+S小正=S大正 4ab(ba)2=c2,化簡可

23、證。發(fā)揮學(xué)生的想象能力拼出不同的圖形,進(jìn)行證明。 勾股定理的證明方法,達(dá)300余種。這個古老的精彩的證法,出自我國古代無名數(shù)學(xué)家之手。激發(fā)學(xué)生的民族自豪感,和愛國情懷。例2已知:在ABC中,C=90,A、B、C的對邊為a、b、c。求證:a2b2=c2。分析:左右兩邊的正方形邊長相等,則兩個正方形的面積相等。左邊S=4abc2右邊S=(a+b)2左邊和右邊面積相等,即4abc2=(a+b)2化簡可證。六、課堂練習(xí)1勾股定理的具體內(nèi)容是: 。2如圖,直角ABC的主要性質(zhì)是:C=90,(用幾何語言表示)兩銳角之間的關(guān)系: ;若D為斜邊中點(diǎn),則斜邊中線 ;若B=30,則B的對邊和斜邊: ;三邊之間的關(guān)

24、系: 。3ABC的三邊a、b、c,若滿足b2= a2c2,則 =90; 若滿足b2c2a2,則B是 角; 若滿足b2c2a2,則B是 角。4根據(jù)如圖所示,利用面積法證明勾股定理。勾股定理(二)一、教學(xué)目的1會用勾股定理進(jìn)行簡單的計(jì)算。2樹立數(shù)形結(jié)合的思想、分類討論思想。二、重點(diǎn)、難點(diǎn)1重點(diǎn):勾股定理的簡單計(jì)算。2難點(diǎn):勾股定理的靈活運(yùn)用。三、例題的意圖分析例1(補(bǔ)充)使學(xué)生熟悉定理的使用,剛開始使用定理,讓學(xué)生畫好圖形,并標(biāo)好圖形,理清邊之間的關(guān)系。讓學(xué)生明確在直角三角形中,已知任意兩邊都可以求出第三邊。并學(xué)會利用不同的條件轉(zhuǎn)化為已知兩邊求第三邊。例2(補(bǔ)充)讓學(xué)生注意所給條件的不確定性,知道

25、考慮問題要全面,體會分類討論思想。例3(補(bǔ)充)勾股定理的使用范圍是在直角三角形中,因此注意要創(chuàng)造直角三角形,作高是常用的創(chuàng)造直角三角形的輔助線做法。讓學(xué)生把前面學(xué)過的知識和新知識綜合運(yùn)用,提高綜合能力。教學(xué)過程備注四、課堂引入復(fù)習(xí)勾股定理的文字?jǐn)⑹?;勾股定理的符號語言及變形。學(xué)習(xí)勾股定理重在應(yīng)用。五、例習(xí)題分析例1(補(bǔ)充)在RtABC,C=90已知a=b=5,求c。已知a=1,c=2, 求b。已知c=17,b=8, 求a。已知a:b=1:2,c=5, 求a。已知b=15,A=30,求a,c。分析:剛開始使用定理,讓學(xué)生畫好圖形,并標(biāo)好圖形,理清邊之間的關(guān)系。已知兩直角邊,求斜邊直接用勾股定理。

26、已知斜邊和一直角邊,求另一直角邊,用勾股定理的便形式。已知一邊和兩邊比,求未知邊。通過前三題讓學(xué)生明確在直角三角形中,已知任意兩邊都可以求出第三邊。后兩題讓學(xué)生明確已知一邊和兩邊關(guān)系,也可以求出未知邊,學(xué)會見比設(shè)參的數(shù)學(xué)方法,體會由角轉(zhuǎn)化為邊的關(guān)系的轉(zhuǎn)化思想。例2(補(bǔ)充)已知直角三角形的兩邊長分別為5和12,求第三邊。分析:已知兩邊中較大邊12可能是直角邊,也可能是斜邊,因此應(yīng)分兩種情況分別進(jìn)形計(jì)算。讓學(xué)生知道考慮問題要全面,體會分類討論思想。例3(補(bǔ)充)已知:如圖,等邊ABC的邊長是6cm。求等邊ABC的高。 求SABC。分析:勾股定理的使用范圍是在直角三角形中,因此注意要創(chuàng)造直角三角形,作

27、高是常用的創(chuàng)造直角三角形的輔助線做法。欲求高CD,可將其置身于RtADC或RtBDC中,但只有一邊已知,根據(jù)等腰三角形三線合一性質(zhì),可求AD=CD=AB=3cm,則此題可解。六、課堂練習(xí)1填空題在RtABC,C=90,a=8,b=15,則c= 。在RtABC,B=90,a=3,b=4,則c= 。在RtABC,C=90,c=10,a:b=3:4,則a= ,b= 。一個直角三角形的三邊為三個連續(xù)偶數(shù),則它的三邊長分別為 。已知直角三角形的兩邊長分別為3cm和5cm,則第三邊長為 。已知等邊三角形的邊長為2cm,則它的高為 ,面積為 。2已知:如圖,在ABC中,C=60,AB=,AC=4,AD是BC

28、邊上的高,求BC的長。 3已知等腰三角形腰長是10,底邊長是16,求這個等腰三角形的面積。勾股定理(三)一、教學(xué)目的1會用勾股定理解決簡單的實(shí)際問題。2樹立數(shù)形結(jié)合的思想。二、重點(diǎn)、難點(diǎn)1重點(diǎn):勾股定理的應(yīng)用。2難點(diǎn):實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化。三、例題的意圖分析例1(教材探究1)明確如何將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,注意條件的轉(zhuǎn)化;學(xué)會如何利用數(shù)學(xué)知識、思想、方法解決實(shí)際問題。例2(教材探究2)使學(xué)生進(jìn)一步熟練使用勾股定理,探究直角三角形三邊的關(guān)系:保證一邊不變,其它兩邊的變化。教學(xué)過程備注四、課堂引入勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們

29、就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。五、例習(xí)題分析例1(教材探究1)分析:在實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程中,注意勾股定理的使用條件,即門框?yàn)殚L方形,四個角都是直角。讓學(xué)生深入探討圖中有幾個直角三角形?圖中標(biāo)字母的線段哪條最長?指出薄木板在數(shù)學(xué)問題中忽略厚度,只記長度,探討以何種方式通過?轉(zhuǎn)化為勾股定理的計(jì)算,采用多種方法。注意給學(xué)生小結(jié)深化數(shù)學(xué)建模思想,激發(fā)數(shù)學(xué)興趣。例2(教材探究2)分析:在AOB中,已知AB=3,AO=2.5,利用勾股定理計(jì)算OB。 在COD中,已知CD=3,CO=2,利用勾股定理計(jì)算OD。則BD=ODOB,通過計(jì)算可知BDAC。進(jìn)一步讓學(xué)生探究AC和BD的關(guān)系

30、,給AC不同的值,計(jì)算BD。六、課堂練習(xí)1小明和爸爸媽媽十一登香山,他們沿著45度的坡路走了500米,看到了一棵紅葉樹,這棵紅葉樹的離地面的高度是 米。2如圖,山坡上兩株樹木之間的坡面距離是4米,則這兩株樹之間的垂直距離是 米,水平距離是 米。2題圖 3題圖 4題圖3如圖,一根12米高的電線桿兩側(cè)各用15米的鐵絲固定,兩個固定點(diǎn)之間的距離是 。4如圖,原計(jì)劃從A地經(jīng)C地到B地修建一條高速公路,后因技術(shù)攻關(guān),可以打隧道由A地到B地直接修建,已知高速公路一公里造價為300萬元,隧道總長為2公里,隧道造價為500萬元,AC=80公里,BC=60公里,則改建后可省工程費(fèi)用是多少?171 勾股定理(四)

31、一、教學(xué)目的1會用勾股定理解決較綜合的問題。2樹立數(shù)形結(jié)合的思想。二、重點(diǎn)、難點(diǎn)1重點(diǎn):勾股定理的綜合應(yīng)用。2難點(diǎn):勾股定理的綜合應(yīng)用。三、例題的意圖分析例1(補(bǔ)充)“雙垂圖”是中考重要的考點(diǎn),熟練掌握“雙垂圖”的圖形結(jié)構(gòu)和圖形性質(zhì),通過討論、計(jì)算等使學(xué)生能夠靈活應(yīng)用。目前“雙垂圖”需要掌握的知識點(diǎn)有:3個直角三角形,三個勾股定理及推導(dǎo)式BC2-BD2=AC2-AD2,兩對相等銳角,四對互余角,及30或45特殊角的特殊性質(zhì)等。例2(補(bǔ)充)讓學(xué)生注意所求結(jié)論的開放性,根據(jù)已知條件,作適當(dāng)輔助線求出三角形中的邊和角。讓學(xué)生掌握解一般三角形的問題常常通過作高轉(zhuǎn)化為直角三角形的問題。使學(xué)生清楚作輔助線

32、不能破壞已知角。例3(補(bǔ)充)讓學(xué)生掌握不規(guī)則圖形的面積,可轉(zhuǎn)化為特殊圖形求解,本題通過將圖形轉(zhuǎn)化為直角三角形的方法,把四邊形面積轉(zhuǎn)化為三角形面積之差。在轉(zhuǎn)化的過程中注意條件的合理運(yùn)用。讓學(xué)生把前面學(xué)過的知識和新知識綜合運(yùn)用,提高解題的綜合能力。例4(教材P76頁探究3)讓學(xué)生利用尺規(guī)作圖和勾股定理畫出數(shù)軸上的無理數(shù)點(diǎn),進(jìn)一步體會數(shù)軸上的點(diǎn)及實(shí)數(shù)一一對應(yīng)的理論。教學(xué)過程備注四、課堂引入復(fù)習(xí)勾股定理的內(nèi)容。本節(jié)課探究勾股定理的綜合應(yīng)用。五、例習(xí)題分析例1(補(bǔ)充)1已知:在RtABC中,C=90,CDBC于D,A=60,CD=,求線段AB的長。分析:本題是“雙垂圖”的計(jì)算題,“雙垂圖”是中考重要的考

33、點(diǎn),所以要求學(xué)生對圖形及性質(zhì)掌握非常熟練,能夠靈活應(yīng)用。目前“雙垂圖”需要掌握的知識點(diǎn)有:3個直角三角形,三個勾股定理及推導(dǎo)式BC2-BD2=AC2-AD2,兩對相等銳角,四對互余角,及30或45特殊角的特殊性質(zhì)等。 要求學(xué)生能夠自己畫圖,并正確標(biāo)圖。引導(dǎo)學(xué)生分析:欲求AB,可由AB=BD+CD,分別在兩個三角形中利用勾股定理和特殊角,求出BD=3和AD=1?;蛴驛B,可由,分別在兩個三角形中利用勾股定理和特殊角,求出AC=2和BC=6。例2(補(bǔ)充)已知:如圖,ABC中,AC=4,B=45,A=60,根據(jù)題設(shè)可知什么?分析:由于本題中的ABC不是直角三角形,所以根據(jù)題設(shè)只能直接求得ACB=7

34、5。在學(xué)生充分思考和討論后,發(fā)現(xiàn)添置AB邊上的高這條輔助線,就可以求得AD,CD,BD,AB,BC及SABC。讓學(xué)生充分討論還可以作其它輔助線嗎?為什么?小結(jié):可見解一般三角形的問題常常通過作高轉(zhuǎn)化為直角三角形的問題。并指出如何作輔助線?解略。例3(補(bǔ)充)已知:如圖,B=D=90,A=60,AB=4,CD=2。求:四邊形ABCD的面積。分析:如何構(gòu)造直角三角形是解本題的關(guān)鍵,可以連結(jié)AC,或延長AB、DC交于F,或延長AD、BC交于E,根據(jù)本題給定的角應(yīng)選后兩種,進(jìn)一步根據(jù)本題給定的邊選第三種較為簡單。教學(xué)中要逐層展示給學(xué)生,讓學(xué)生深入體會。解:延長AD、BC交于E。A=60,B=90,E=3

35、0。AE=2AB=8,CE=2CD=4,BE2=AE2-AB2=82-42=48,BE=。DE2= CE2-CD2=42-22=12,DE=。S四邊形ABCD=SABE-SCDE=ABBE-CDDE=小結(jié):不規(guī)則圖形的面積,可轉(zhuǎn)化為特殊圖形求解,本題通過將圖形轉(zhuǎn)化為直角三角形的方法,把四邊形面積轉(zhuǎn)化為三角形面積之差。例4(教材探究3)分析:利用尺規(guī)作圖和勾股定理畫出數(shù)軸上的無理數(shù)點(diǎn),進(jìn)一步體會數(shù)軸上的點(diǎn)及實(shí)數(shù)一一對應(yīng)的理論。變式訓(xùn)練:在數(shù)軸上畫出表示的點(diǎn)。六、課堂練習(xí)1ABC中,AB=AC=25cm,高AD=20cm,則BC= ,SABC= 。2ABC中,若A=2B=3C,AC=cm,則A=

36、度,B= 度,C= 度,BC= ,SABC= 。3ABC中,C=90,AB=4,BC=,CDAB于D,則AC= ,CD= ,BD= ,AD= ,SABC= 。4已知:如圖,ABC中,AB=26,BC=25,AC=17,求SABC。172 勾股定理的逆定理(一)一、教學(xué)目的1體會勾股定理的逆定理得出過程,掌握勾股定理的逆定理。2探究勾股定理的逆定理的證明方法。3理解原命題、逆命題、逆定理的概念及關(guān)系。二、重點(diǎn)、難點(diǎn)1重點(diǎn):掌握勾股定理的逆定理及證明。2難點(diǎn):勾股定理的逆定理的證明。三、例題的意圖分析例1(補(bǔ)充)使學(xué)生了解命題,逆命題,逆定理的概念,及它們之間的關(guān)系。例2通過讓學(xué)生動手操作,畫好圖

37、形后剪下放到一起觀察能否重合,激發(fā)學(xué)生的興趣和求知欲,鍛煉學(xué)生的動手操作能力,再通過探究理論證明方法,使實(shí)踐上升到理論,提高學(xué)生的理性思維。例3(補(bǔ)充)使學(xué)生明確運(yùn)用勾股定理的逆定理判定一個三角形是否是直角三角形的一般步驟:先判斷那條邊最大。分別用代數(shù)方法計(jì)算出a2+b2和c2的值。判斷a2+b2和c2是否相等,若相等,則是直角三角形;若不相等,則不是直角三角形。教學(xué)過程備注四、課堂引入創(chuàng)設(shè)情境:怎樣判定一個三角形是等腰三角形?怎樣判定一個三角形是直角三角形?和等腰三角形的判定進(jìn)行對比,從勾股定理的逆命題進(jìn)行猜想。五、例習(xí)題分析例1(補(bǔ)充)說出下列命題的逆命題,這些命題的逆命題成立嗎?同旁內(nèi)角

38、互補(bǔ),兩條直線平行。如果兩個實(shí)數(shù)的平方相等,那么兩個實(shí)數(shù)平方相等。線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等。直角三角形中30角所對的直角邊等于斜邊的一半。分析:每個命題都有逆命題,說逆命題時注意將題設(shè)和結(jié)論調(diào)換即可,但要分清題設(shè)和結(jié)論,并注意語言的運(yùn)用。理順?biāo)麄冎g的關(guān)系,原命題有真有假,逆命題也有真有假,可能都真,也可能一真一假,還可能都假。解略。例2證明:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形。分析:注意命題證明的格式,首先要根據(jù)題意畫出圖形,然后寫已知求證。如何判斷一個三角形是直角三角形,現(xiàn)在只知道若有一個角是直角的三角形是直角三角形,從而將問題轉(zhuǎn)

39、化為如何判斷一個角是直角。利用已知條件作一個直角三角形,再證明和原三角形全等,使問題得以解決。先做直角,再截取兩直角邊相等,利用勾股定理計(jì)算斜邊A1B1=c,則通過三邊對應(yīng)相等的兩個三角形全等可證。先讓學(xué)生動手操作,畫好圖形后剪下放到一起觀察能否重合,激發(fā)學(xué)生的興趣和求知欲,再探究理論證明方法。充分利用這道題鍛煉學(xué)生的動手操作能力,由實(shí)踐到理論學(xué)生更容易接受。證明略。例3(補(bǔ)充)已知:在ABC中,A、B、C的對邊分別是a、b、c,a=n21,b=2n,c=n21(n1)求證:C=90。分析:運(yùn)用勾股定理的逆定理判定一個三角形是否是直角三角形的一般步驟:先判斷那條邊最大。分別用代數(shù)方法計(jì)算出a2

40、+b2和c2的值。判斷a2+b2和c2是否相等,若相等,則是直角三角形;若不相等,則不是直角三角形。要證C=90,只要證ABC是直角三角形,并且c邊最大。根據(jù)勾股定理的逆定理只要證明a2+b2=c2即可。由于a2+b2= (n21)2(2n)2=n42n21,c2=(n21)2= n42n21,從而a2+b2=c2,故命題獲證。六、課堂練習(xí)1判斷題。在一個三角形中,如果一邊上的中線等于這條邊的一半,那么這條邊所對的角是直角。命題:“在一個三角形中,有一個角是30,那么它所對的邊是另一邊的一半。”的逆命題是真命題。勾股定理的逆定理是:如果兩條直角邊的平方和等于斜邊的平方,那么這個三角形是直角三角

41、形。ABC的三邊之比是1:1:,則ABC是直角三角形。2ABC中A、B、C的對邊分別是a、b、c,下列命題中的假命題是( )A如果CB=A,則ABC是直角三角形。B如果c2= b2a2,則ABC是直角三角形,且C=90。C如果(ca)(ca)=b2,則ABC是直角三角形。D如果A:B:C=5:2:3,則ABC是直角三角形。3下列四條線段不能組成直角三角形的是( )Aa=8,b=15,c=17Ba=9,b=12,c=15Ca=,b=,c=Da:b:c=2:3:44已知:在ABC中,A、B、C的對邊分別是a、b、c,分別為下列長度,判斷該三角形是否是直角三角形?并指出那一個角是直角? a=,b=,

42、c=; a=5,b=7,c=9;a=2,b=,c=; a=5,b=,c=1。勾股定理的逆定理(二)一、教學(xué)目的1靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題。2進(jìn)一步加深性質(zhì)定理及判定定理之間關(guān)系的認(rèn)識。二、重點(diǎn)、難點(diǎn)1重點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題。2難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題。三、例題的意圖分析例1(見教材例題)讓學(xué)生養(yǎng)成利用勾股定理的逆定理解決實(shí)際問題的意識。例2(補(bǔ)充)培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問題的意識。教學(xué)過程備注四、課堂引入創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識和數(shù)學(xué)方法。五、例習(xí)題分析例1

43、(見教材)分析:了解方位角,及方位名詞;依題意畫出圖形;依題意可得PR=121.5=18,PQ=161.5=24, QR=30;因?yàn)?42+182=302,PQ2+PR2=QR2,根據(jù)勾股定理 的逆定理,知QPR=90;PRS=QPR-QPS=45。小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識。例2(補(bǔ)充)一根30米長的細(xì)繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀。分析:若判斷三角形的形狀,先求三角形的三邊長;設(shè)未知數(shù)列方程,求出三角形的三邊長5、12、13;根據(jù)勾股定理的逆定理,由52+122=132,知三角形為直角

44、三角形。解略。六、課堂練習(xí)1小強(qiáng)在操場上向東走80m后,又走了60m,再走100m回到原地。小強(qiáng)在操場上向東走了80m后,又走60m的方向是 。2如圖,在操場上豎直立著一根長為2米的測影竿,早晨測得它的影長為4米,中午測得它的影長為1米,則A、B、C三點(diǎn)能否構(gòu)成直角三角形?為什么?3如圖,在我國沿海有一艘不明國籍的輪船進(jìn)入我國海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A、B兩個基地前去攔截,六分鐘后同時到達(dá)C地將其攔截。已知甲巡邏艇每小時航行120海里,乙巡邏艇每小時航行50海里,航向?yàn)楸逼?0,問:甲巡邏艇的航向?勾股定理的逆定理(三)一、教學(xué)目的1應(yīng)用勾股定理的逆定理判斷一個三角形是否是直角三角形。 2靈活應(yīng)用勾股定理及逆定理解綜合題。3進(jìn)一步加深性質(zhì)定理及判定定理之間關(guān)系的認(rèn)識。二、重點(diǎn)、難點(diǎn)1重點(diǎn):利用勾股定理及逆定理解綜合題。2難點(diǎn):利用勾股定理及逆定理解綜合題。三、例題的意圖分析例1(補(bǔ)充)利用因式分解和勾股定理的逆定理判斷三角形的形狀。例2(補(bǔ)充)使學(xué)生掌握研究四邊形的問題,通常添置輔助線把它轉(zhuǎn)化為研究三角形的問題。本題輔助線作平行線間距離無法求解。創(chuàng)造3、4、5勾股數(shù),利用勾股定理的逆定理證明DE就是平行線間距離。例3(補(bǔ)充)勾股定理及逆定理的綜合應(yīng)用,注意條件的轉(zhuǎn)化及變形。教

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論