2015年新人教版七年級下冊全部數(shù)學教案_第1頁
2015年新人教版七年級下冊全部數(shù)學教案_第2頁
2015年新人教版七年級下冊全部數(shù)學教案_第3頁
2015年新人教版七年級下冊全部數(shù)學教案_第4頁
2015年新人教版七年級下冊全部數(shù)學教案_第5頁
已閱讀5頁,還剩61頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、精選優(yōu)質文檔-傾情為你奉上2015新人教版七年級數(shù)學下冊全冊教案第五章 相交線與平行線5.1.1相交線教學目標:1理解對頂角和鄰補角的概念,能在圖形中辨認2掌握對頂角相等的性質和它的推證過程3.通過在圖形中辨認對頂角和鄰補角,培養(yǎng)學生的識圖能力重點:在較復雜的圖形中準確辨認對頂角和鄰補角難點:在較復雜的圖形中準確辨認對頂角和鄰補角教學過程一、創(chuàng)設情境,引入課題先請同學觀察本章的章前圖,然后引導學生觀察,并回答問題學生活動:口答哪些道路是交錯的,哪些道路是平行的教師導入:圖中的道路是有寬度的,是有限長的,而且也不是完全直的,當我們把它們看成直線時,這些直線有些是相交線,有些是平行線相交線、平行線

2、都有許多重要性質,并且在生產和生活中有廣泛應用所以研究這些問題對今后的工作和學習都是有用的,也將為后面的學習做些準備我們先研究直線相交的問題,引入本節(jié)課題二、探究新知,講授新課1對頂角和鄰補角的概念學生活動:觀察上圖,同桌討論,教師統(tǒng)一學生觀點并板書【板書】1與3是直線AB、CD相交得到的,它們有一個公共頂點O,沒有公共邊,像這樣的兩個角叫做對頂角學生活動:讓學生找一找上圖中還有沒有對頂角,如果有,是哪兩個角?學生口答:2和4再也是對頂角緊扣對頂角定義強調以下兩點:(1)辨認對頂角的要領:一看是不是兩條直線相交所成的角,對頂角與相交線是唇齒相依,哪里有相交直線,哪里就有對頂角,反過來,哪里有對

3、頂角,哪里就有相交線;二看是不是有公共頂點;三看是不是沒有公共邊符合這三個條件時,才能確定這兩個角是對頂角,只具備一個或兩個條件都不行(2)對頂角是成對存在的,它們互為對頂角,如1是3的對頂角,同時,3是1的對頂角,也常說1和3是對頂角2對頂角的性質提出問題:我們在圖形中能準確地辨認對頂角,那么對頂角有什么性質呢?學生活動:學生以小組為單位展開討論,選代表發(fā)言,井口答為什么【板書】1與2互補,3與2互補(鄰補角定義),l3(同角的補角相等)注意:l與2互補不是給出的已知條件,而是分析圖形得到的;所以括號內不填已知,而填鄰補角定義或寫成:1180°2,3180°2(鄰補角定義

4、),13(等量代換)學生活動:例題比較簡單,教師不做任何提示,讓學生在練習本上獨立完成解題過程,請一個學生板演。解:3140°(對頂角相等)2180°40°140°(鄰補角定義)42140°(對頂角相等)三、范例學習學生活動:讓學生把例題中140°這個條件換成其他條件,而結論不變,自編幾道題變式1:把l40°變?yōu)?140°變式2:把140°變?yōu)?是l的3倍變式3:把140°變?yōu)?:22:9四、課堂小結學生活動:表格中的結論均由學生自己口答填出角的名稱特征性質相同點不同點對頂角兩條直線相交面成的角

5、有一個公共頂點沒有公共邊對頂角相等都是兩直線相交而成的角,都有一個公共頂點,它們都是成對出現(xiàn)。對頂角沒有公共邊而鄰補角有一條公共邊;兩條直線相交時,一個有的對頂角有一個,而一個角的鄰補角有兩個。鄰補角兩條直線相交面成的角有一個公共頂點有一條公共邊鄰補角互補五、布置作業(yè):課本P3練習5.1.2垂線(第一課時)教學目標:1.經歷觀察、操作、想像、歸納概括、交流等活動,進一步發(fā)展空間觀念,用幾何語言準確表達能力.毛2.了解垂直概念,能說出垂線的性質“經過一點,能畫出已知直線的一條垂線,并且只能畫出一條垂線”,會用三角尺或量角器過一點畫一條直線的垂線.重點兩條直線互相垂直的概念、性質和畫法.教學過程一

6、、創(chuàng)設問題情境1.學生觀察教室里的課桌面、黑板面相鄰的兩條邊,方格紙的橫線和豎線,思考這些給大家什么印象?在學生回答之后,教師指出:“垂直”兩個字對大家并不陌生,但是垂直的意義,垂線有什么性質,我們不一定都了解,這可是我們要學習的內容.2.學生觀察課本P3圖5.1-4思考:固定木條a,轉動木條,當b的位置變化時,a、b所成的角a是如何變化的?其中會有特殊情況出現(xiàn)嗎?當這種情況出現(xiàn)時,a、b所成的四個角有什么特殊關系?教師在組織學生交流中,應學生明白:當b的位置變化時,角a從銳角變?yōu)殁g角,其中a是直角是特殊情況.其特殊之處還在于:當a是直角時,它的鄰補角,對頂角都是直角,即a、b所成的四個角都是

7、直角,都相等.3.師生共同給出垂直定義.師生分清“互相垂直”與“垂線”的區(qū)別與聯(lián)系:“互相垂直”指兩條直線的位置關系;“垂線”是指其中一條直線對另一條直線的命名。如果說兩條直線“互相垂直”時,其中一條必定是另一條的“垂線”,如果一條直線是另一條直線的“垂線”,則它們必定“互相垂直”。4.垂直的表示法.垂直用符號“”來表示,結合課本圖5.15說明“直線AB垂直于直線CD,垂足為O”,則記為ABCD,垂足為O,并在圖中任意一個角處作上直角記號,如圖.5.簡單應用(1)學生觀察課本P6圖5.1-6中的一些互相垂直的線條,并再舉出生活中其他實例.(2)判斷以下兩條直線是否垂直:兩條直線相交所成的四個角

8、中有一個是直角;兩條直線相交所成的四個角相等;兩條直線相交,有一組鄰補角相等;兩條直線相交,對頂角互補.二、畫圖實踐,探究垂線的性質1.學生用三角尺或量角器畫已知直線L的垂線.(1)已知直線L(教師在黑板上畫一條直線L),畫出直線L的垂線.待學生上黑板畫出L的垂線后,教師追問學生:還能畫出L的垂線嗎?能畫幾條?通過師生交流,使學生明確直線L的垂線有無數(shù)多條,即存在,但有不確定性.教師再問:怎樣才能確定直線L的垂線位置?在學生道出:在直線L上取一點A,過點A畫L的垂線,并且動手畫出圖形.教師板書學生的結論:經過直線上一點有且只有一條直線與已知直線垂直.(2)經過直線L外一點B畫直線L的垂線,這樣

9、的垂線能畫出幾條?從中你又得出什么結論?教師板書學生的結論:經過直線外一點有且只有一條直線與已知直線垂直.教師讓學生通過畫圖操作所得兩條結論合并成一條,并板書:垂線性質1:過一點有且只有一條直線與已知直線垂直.2.變式訓練,鞏固垂線的概念和畫法,如圖根據下列語句畫圖:(1)過點P畫射線MN的垂線,Q為垂足;(2)過點P畫射線BN的垂線,交射線BN反向延長線于Q點;(3)過點P畫線段AB的垂線,交線AB延長線于Q點.學生畫完圖后,教師歸結:畫一條射線或線段的垂線,就是畫它們所在直線的垂線.三、課堂小結本節(jié)學習了互相垂直、垂線等概念,還學習了過一點畫已知直線的垂線的畫法,并得出垂線一條性質,你能說

10、出相關的內容嗎?四、布置作業(yè):課本P7練習,P9.3,4,5,9.5.1.2垂線(第二課時)教學目標:1.經歷觀察、操作、想像、歸納概括、交流等活動,進一步發(fā)展空間觀念,用幾何語言準確表達能力。毛2.了解垂線段的概念,了解垂線段最短的性質,體會點到直線的距離的意義,并會度量點到直線的距離.教學重點:“垂線段最短”的性質,點到直線的距離的概念及其簡單應用.教學難點:對點到直線的距離的概念的理解.教學過程一、創(chuàng)設問題情境1.教師展示課本圖5.1-8,提出問題:要把河中的水引到農田P處,如何挖渠能使渠道最短?學生看圖、思考.2.教師以問題串形式,啟發(fā)學生思考.(1)問題1,上學期我們曾經學過什么最短

11、的知識,還記得嗎?學生說出:兩點間線段最短.(2)問題2,如果把渠道看成是線段,它的一個端點自然是P,那么另一個端點的位置呢?把江河看成直線L,那么原問題就是怎么的數(shù)學問題.問題2使學生能用數(shù)學眼光思考:在連接直線L外一點P與直線L上各點的線段中,哪一條最短?3.教師演示教具,給學生直觀的感受.教具如圖:在硬紙板上固定木條L,L外一點P,轉動的木條a一端固定在點P.使木條L與a相交,左右擺動木條a,L與a的交點A隨之變化,線段PA長度也隨之變化.PA最短時,a與L的位置關系如何?用三角尺檢驗.4.學生畫圖操作,得出結論.(1)畫出直線L,L外一點P;(2)過P點出POL,垂足為O;(3)點A1

12、,A2,A3在L上,連接PA、PA2、PA3;(4)用疊合法或度量法比較PO、PA1、PA2、PA3長短.5.師生交流,得出垂線的另一條性質.教師板書:連接直線外一點與直線上各點的所有線段中,垂線段最短.簡單說成:垂線段最短.關于垂線段教師可讓學生思考:(1)垂線段與垂線的區(qū)別聯(lián)系.(2)垂線段與線段的區(qū)別與聯(lián)系.二、點到直線的距離1.師生根據兩點間的距離的意義給出點到直線的距離命名.結合課本圖形(圖5.1-9),深入認識垂線段PO:POL,POA=90°,O為垂足,垂線段PO的長度比其他線段PA1、PA2中是最短的.按照兩點間的距離給點到直線的距離命名,教師板書:直線外一點到這條直

13、線的垂線段的長度,叫做點到直線的距離.在圖5.1-9中,PO的長度是點P到直線L的距離,其余結論PA、PA2長度都不是點P到L的距離.2、練習課本P6練習三、課堂小結:通過這節(jié)課,我們主要學習了什么呢?四、布置作業(yè):課本P8.6,P10.10,11,12,P10觀察與猜想.5.1.3同位角、內錯角、同旁內角教學目標:1、理解同位角、內錯角、同旁內角的概念;2、會識別同位角、內錯角、同旁內角.重點:同位角、內錯角、同旁內角的概念與識別;難點:識別同位角、內錯角、同旁內角。教學過程一、導入新課前面我們研究了一條直線與另一條直線相交的情形,接下來,我們進一步研究一條直線分別與兩條直線相交的情形。二、

14、同位角、內錯角、同旁內角如圖,直線a、b與直線c相交,或者說,兩條直線a、b被第三條直線c所截,得到八個角。我們來研究那些沒有公共頂點的兩個角的關系。56871與2、4與8、5與6、3與7有什么位置關系?在截線的同旁,被截直線的同方向(同上或同下).具有這種位置關系的兩個角叫做同位角。同位角形如字母“F”。3與2、4與6的位置有什么共同的特點?在截線的兩旁,被截直線之間。具有這種位置關系的兩個角叫做內錯角.內錯角形如字母“Z”。3與6、4與2的位置有什么共同的特點?在截線的同旁,被截直線之間。具有這種位置關系的兩個角叫做同旁內角.同旁內角形如字母“U”。思考:這三類角有什么相同的地方?(1)都

15、不相鄰即不存在共公頂點;(2)有一邊在同一條直線(截線)上。三、例題例如圖,直線DE,BC被直線AB所截,(1)1與2、1與3、1與4各是什么角?為什么?(2)如果1=4,那么1與2相等嗎?1與3互補嗎?為什么?31BD4ACE2解:(1)1與2是內錯角,因為1與2在直線DE,BC之間,在截線AB的兩旁;1與3是同旁內角,因為1與3在直線DE,BC之間,在截線AB的同旁;1與4是同位角,因為1與4在直線DE,BC的同方向,在截線AB的同方向。(2)如果1=4,又因為2=4,所以1=2;因為3+4=1800,又1=4,所以1+3=1800,即1與3互補。四、課堂小結:通過這節(jié)課,我們主要學習了什

16、么呢?五、布置作業(yè):課本P7練習1、2題5.2.1平行線教學目標1.經歷觀察教具模式的演示和通過畫圖等操作,交流歸納與活動,進一步發(fā)展空間觀念.毛2.了解平行線的概念、平面內兩條直線的相交和平行的兩種位置關系,知道平行公理以及平行公理的推論.3.會用符號語方表示平行公理推論,會用三角尺和直尺過已知直線外一點畫這條直線的平行線.重點:探索和掌握平行公理及其推論.難點:對平行線本質屬性的理解,用幾何語言描述圖形的性質.教學過程一、創(chuàng)設問題情境1.復習提問:兩條直線相交有幾個交點?相交的兩條直線有什么特殊的位置關系?學生回答后,教師把教具中木條b與c重合在一起,轉動木條a確認學生的回答.教師接著問:

17、在平面內,兩條直線除了相交外,還有別的位置關系嗎?2.教師演示教具.順時針轉動木條b兩圈,讓學生思考:把a、b想像成兩端可以無限延伸的兩條直線,順時針轉動b時,直線b與直線a的交點位置將發(fā)生什么變化?在這個過程中,有沒有直線b與c木相交的位置?3.教師組織學生交流并形成共識.轉動b時,直線b與c的交點從在直線a上A點向左邊距離A點很遠的點逐步接近A點,并垂合于A點,然后交點變?yōu)樵贏點的右邊,逐步遠離A點.繼續(xù)轉動下去,b與a的交點就會從A點的左邊又轉動A點的左邊可以想象一定存在一個直線b的位置,它與直線a左右兩旁都沒有交點.二、平行線定義表示法1.結合演示的結論,師生用數(shù)學語言描述平行定義:同

18、一平面內,存在一條直線a與直線b不相交的位置,這時直線a與b互相平行.換言之,同一平面內,不相交的兩條直線叫做平行線.直線a與b是平行線,記作“”,這里“”是平行符號.教師應強調平行線定義的本質屬性,第一是同一平面內兩條直線,第二是設有交點的兩條直線.2.同一平面內,兩條直線的位置關系教師引導學生從同一平面內,兩條直線的交點情況去確定兩條直線的位置關系.在同一平面內,兩條直線只有兩種位置關系:相交或平行,兩者必居其一.即兩條直線不相交就是平行,或者不平行就是相交.三、畫圖、觀察、歸納概括平行公理及平行公理推論1.在轉動教具木條b的過程中,有幾個位置能使b與a平行?本問題是學生直覺直線b繞直線a

19、外一點B轉動時,有并且只有一個位置使a與b平行.2.用直線和三角尺畫平行線.已知:直線a,點B,點C.(1)過點B畫直線a的平行線,能畫幾條?(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?3.通過觀察畫圖、歸納平行公理及推論.(1)由學生對照垂線的第一性質說出畫圖所得的結論.(2)在學生充分交流后,教師板書.平行公理:經過直線外一點,有且只有一條直線與這條直線平行.(3)比較平行公理和垂線的第一條性質.共同點:都是“有且只有一條直線”,這表明與已知直線平行或垂直的直線存在并且是唯一的.不同點:平行公理中所過的“一點”要在已知直線外,兩垂線性質中對“一點”沒有限制,可在直線上,也可在直

20、線外.4.歸納平行公理推論.(1)學生直觀判定過B點、C點的a的平行線b、c是互相平行.(2)從直線b、c產生的過程說明直線b直線c.(3)學生用三角尺與直尺用平推方驗證bc.(4)師生用數(shù)學語言表達這個結論,教師板書.結果兩條直線都與第三條直線平行,那么這條直線也互相平行.結合圖形,教師引導學生用符號語言表達平行公理推論:如果ba,ca,那么bc.(5)簡單應用.練習:如果多于兩條直線,比如三條直線a、b、c與直線L都平行,那么這三條直線互相平行嗎?請說明理由.本練習是讓學生在反復運用平行公理推論中掌握平行公理推論以及說理規(guī)范.四、作業(yè):課本P16.7,P17.11.5.2.2平行線的判定(

21、一)教學目標:經歷探索兩直線平行條件的過程,理解兩直線平行的條件.重點:探索兩直線平行的條件難點:理解“同位角相等,兩條直線平行”教學過程一、情景導入.裝修工人正在向墻上釘木條,如果木條b與墻壁邊緣垂直,那么木條a與墻壁邊緣所夾角為多少度時,才能使木條a與木條b平行?要解決這個問題,就要弄清楚平行的判定。二、直線平行的條件以前我們學過用直尺和三角尺畫平行線,如圖(課本P13圖5.2-5)在三角板移動的過程中,什么沒有變?三角板經過點P的邊與靠在直尺上的邊所成的角沒有變。簡化圖5.2-5,得圖3.圖31與2是三角板經過點P的邊與靠在直尺上的邊所成的角移動前后的位置,顯然1與2是同位角并且它們相等

22、,由此我們可以知道什么?兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行.簡單地說:同位角相等,兩條直線平行.符號語言:1=2ABCD.如圖(課本P145.2-7),你能說出木工用圖中這種叫做角尺的工具畫平行線的道理嗎?用角尺畫平行線,實際上是畫出了兩個直角,根據“同位角相等,兩條直線平行.”,可知這樣畫出的就是平行線。如圖,(1)如果2=3,能得出ab嗎?(2)如果241800,能得出ab嗎?32bac41(1)2=3(已知)3=1(對頂角相等)1=2(等量代換)ab(同位角相等,兩條直線平行)你能用文字語言概括上面的結論嗎?兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直

23、線平行.簡單地說:內錯角相等,兩直線平行.符號語言:2=3ab.(2)4+2=180°,4+1=180°(已知)2=1(同角的補角相等)ab.(同位角相等,兩條直線平行)你能用文字語言概括上面的結論嗎?兩條直線被第三條直線所截,如果同旁內角互補,那么兩條直線平行.簡單地說:同旁內角互補,兩直線平行.符號語言:4+2=180°ab.四、課堂練習1、課本P15練習1,補充(3)由A+ABC1800可以判斷哪兩條直線平行?依據是什么?2、課本P162題。五、課堂小結:怎樣判斷兩條直線平行?六、布置作業(yè):P16、1、2題;P174、5、6。5.2.2平行線的判定(二)教學

24、目標1、掌握直線平行的條件,并能解決一些簡單的問題;2、初步了解推理論證的方法,會正確的書寫簡單的推理過程。重點:直線平行的條件及運用難點:會正確的書寫簡單的推理過程是教學過程一、復習導入我們學習過哪些判斷兩直線平行的方法?(1)平行線的定義:在同一平面內不相交的兩條直線平行。(2)平行公理的推論:如果兩條直線都平行于第三條直線,那么這兩條直線也互相平行。(3)兩直線平行的條件:兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行.兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直線平行.兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行.二、例題例在同一平面內,如果兩

25、條直線都垂直于同一條直線,那么這兩條直線平行嗎?為什么?解:這兩條直線平行。baca(已知)1=2=90°(垂直的定義)bc(同位角相等,兩直線平行)你還能用其它方法說明bc嗎?方法一:如圖(1),利用“內錯角相等,兩直線平行”說明;方法二:如圖(2),利用“同旁內角相等,兩直線平行”說明.(1)(2)注意:本例也是一個有用的結論。例2如圖,點B在DC上,BE平分ABD,DBE=A,則BEAC,請說明理由。ABCDE分析:由BE平分ABD我們可以知道什么?聯(lián)系DBE=A,我們又可以知道什么?由此能得出BEAC嗎?為什么?解:BE平分ABDABE=DBE(角平分線的定義)又DBE=AA

26、BE=A(等量代換)BEAC(內錯角相等,兩直線平行)注意:用符號語言書寫證明過程時,要步步有據。四、課堂練習1、如圖,1=2=55°,試說明直線AB,CD平行?3ABCDEF211題2題2、如圖所示,已知直線a,b,c,d,e,且1=2,3+4=180°,則a與c平行嗎?為什么?五、布置作業(yè):課本P16第7題,P17第12題(提示:畫圖說明)。5.3.1平行線的性質教學目標:1.經歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空間觀念,推理能力和有條理表達能力。毛2.經歷探索直線平行的性質的過程,掌握平行線的三條性質,并能用它們進行簡單的推理和計算.重點:探索并掌握平行

27、線的性質,能用平行線性質進行簡單的推理和計算.難點:能區(qū)分平行線的性質和判定,平行線的性質與判定的混合應用.教學過程一、引導學生逆向思維現(xiàn)在同學們已經掌握了利用同位角相等,或者內錯角相等,或者同旁內角互補,判定兩條直線平行的三種方法.在這一節(jié)課里:大家把思維的指向反過來:如果兩條直線平行,那么同位角、內錯角、同旁內角的數(shù)量關系又該如何表達?二、實踐探究1.學生畫圖活動:用直尺和三角尺畫出兩條平行線ab,再畫一條截線c與直線a、b相交,標出所形成的八個角(如課本P21圖5.3-1).2.學生測量這些角的度數(shù),把結果填入表內.角12345678度數(shù)3.學生根據測量所得數(shù)據作出猜想.(1)圖中哪些角

28、是同位角?它們具有怎樣的數(shù)量關系?(2)圖中哪些角是內錯角?它們具有怎樣的數(shù)量關系?(3)圖中哪些角是同旁內角?它們具有怎樣的數(shù)量關系?4.學生驗證猜測.學生活動:再任意畫一條截線d,同樣度量并計算各個角的度數(shù),你的猜想還成立嗎?5.師生歸納平行線的性質,教師板書.平行線具有性質:性質1:兩條平行線被第三條直線所截,同位角相等,簡稱為兩直線平行,同位角相等.性質2:兩條平行線被第三條直線所截,內錯角相等,簡稱為兩直線平行,內錯相等.性質3:兩條直線按被第三條線所截,同旁內角互補,簡稱為兩直線平行,同旁內角互補.教師讓學生結合右圖,用符號語言表達平行線的這三條性質,教師同時板書平行線的性質和平行

29、線的判定.平行線的性質平行線的判定因為ab,因為1=2,所以1=2所以ab.因為ab,因為2=3,所以2=3,所以ab.因為ab,因為2+4=180°,所以2+4=180°,所以ab.6.教師引導學生理清平行線的性質與平行線判定的區(qū)別.學生交流后,師生歸納:兩者的條件和結論正好相反:由角的數(shù)量關系(指同位角相等,內錯角相等,同旁內角互補),得出兩條直線平行的論述是平行線的判定,這里角的關系是條件,兩直線平行是結論.由已知的兩條直線平行得出角的數(shù)量關系(指同位角相等,內錯角相等,同旁內角互補)的論述是平行線的性質,這里兩直線平行是條件,角的關系是結論.7.進一步研究平行線三條

30、性質之間的關系.教師:大家能根據性質1,推出性質2成立的道理嗎?結合上圖,教師啟發(fā)分析:考察性質1、性質2的結論發(fā)生了什么變化?學生回答1換成3,教師再問1與3有什么關系?并完成說理過程,教師糾正學生錯誤,規(guī)范地給出說理過程.因為ab,所以1=2(兩直線平行,同位角相等);又3=1(對頂角相等),所以2=3.教師說明:這是有兩步的說理,第一步推理根據平行線性質1,第二步推理的條件不僅有1=2,還有3=1.2=3是根據等式性質.根據等式性質得到的結論可以不寫理由.學生仿照以下說理,說出如何根據性質1得到性質3的道理.8.平行線性質應用.講解課本P23例題三、鞏固練習:課本練習(P22).四、作業(yè)

31、:課本P22.1,2,3,4,6.5.3.2命題、定理教學目的:1、知識與技能:了解命題的概念,并能區(qū)分命題的題設和結論.2、經歷判斷命題真假的過程,對命題的真假有一個初步的了解.3、初步培養(yǎng)學生不同幾何語言相互轉化的能力.重點:命題的概念和區(qū)分命題的題設與結論.難點:區(qū)分命題的題設和結論.教學過程一、創(chuàng)設情境復習導入教師出示下列問題:1.平行線的判定方法有哪些?2.平行線的性質有哪些.學生能積極的思考教師所出示的各個問題復習鞏固有關的知識點為本節(jié)課的學習打下良好的基礎.(注意:平行線的判定方法三種,另外還有平行公理的推論)二、嘗試活動探索新知教師給出下列語句,如果兩條直線都與第三條直線平行,

32、那么這條直線也互相平行;等式兩邊都加同一個數(shù),結果仍是等式;對頂角相等;如果兩條直線不平行,那么同位角不相等.學生學生能由教師的引導分析每個語句的特點.思考:你能說一說這4個語句有什么共同點嗎?并能耐總結出這些語句都是對某一件事情作出“是”或“不是”的判斷.初步感受到有些數(shù)學語言是對某件事作出判斷的.教師給出命題的定義.判斷一件事情的語句,叫做命題.(3)命題的組成.命題由題設和結論兩部分組成.題設是已知事項,結論是由已知事項推出的事項.命題的形成,可以寫成“如果,那么”的形式。真命題與假命題:教師出示問題:如果兩個角相等,那么它們是對頂角.如果ab.bc那么a=b如果兩個角互補,那么它們是鄰

33、補角.三、嘗試反饋理解新知明確命題有正確與錯誤之分:命題的正確性是我們經過推理證實的,這樣得到的真命題叫做定理,作為真命題,定理也可以作為繼續(xù)推理的依據.1.“等式兩邊乘同一個數(shù),結果仍是等式”是命題嗎?它們題設和結論分別是什么?2.命題“兩條平行線被第三第直線所截,內錯角相等”是正確的?命題“如果兩個角互補,那么它們是鄰補角”是正確嗎?再舉出一些命題的例子,判斷它們是否正確.四、總結拓展:教師引導學生完成本節(jié)課的小結,強調重要的知識點.五、布置作業(yè):習題5.3第11題.5.4平移教學目標:1、了解平移的概念,會進行點的平移,理解平移的性質,能解決簡單的平移問題2、培養(yǎng)學生的空間觀念,學會用運

34、動的觀點分析問題.重點:平移的概念和作圖方法.難點:平移的作圖.教學過程一.觀察圖形形成印象生活中有許多美麗的圖案,他們都有著共同的特點,請同學們欣賞下面圖案.觀察上面圖形,我們發(fā)現(xiàn)他們都有一個局部和其他部分重復,如果給你一個局部,你能復制他們嗎?學生思考討論,借助舉例說明.二.提出新知實踐探索平移:(1)把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同.(2)新圖形中的每一點,都是由原圖形中的某一個點移動后得到的,這兩個點是對應點.(3)連接各組對應的線段平行且相等.圖形的這種變換,叫做平移變換,簡稱平移探究:設計一個簡單的圖案,利用一張半透明的紙附在上面

35、,繪制一排形狀,大小完全一樣的圖案引導學生找規(guī)律,發(fā)現(xiàn)平移特征三.典例剖析深化鞏固例如圖,(1)平移三角形ABC,使點A運動到A,畫出平移后的ABC先觀察探討,再通過點的平移,線段的平移總結規(guī)律,給出定義探究活動可以使學生更進一步了解平移四、鞏固練習課本33頁:1,2,4,5,6,7五、小結:在平移過程中,對應點所連的線段也可能在一條直線上,當圖形平移的方向是沿著一邊所在直線的方向時,那么此邊上的對應點必在這條直線上。2利用平移的特征,作平行線,構造等量關系是接7題常用的方法.六、作業(yè)課本P30頁習題5.4第3題第五章小結教學目標:1.經歷對本章所學知識回顧與思考的過程,將本章內容條理化,系統(tǒng)

36、化,梳理本章的知識結構.毛2.通過對知識的疏理,進一步加深對所學概念的理解,進一步熟悉和掌握幾何語言,能用語言說明幾何圖形.3.使學生認識平面內兩條直線的位置關系,在研究平行線時,能通過有關的角來判斷直線平行和反映平行線的性質,理解平移的性質,能利用平移設計圖案.重點:復習正面內兩條直線的相交和平行的位置關系,以及相交平行的綜合應用.難點:垂直、平行的性質和判定的綜合應用.教學過程一、復習提問本章相交線、平行線中學習了哪些主要問題?教師根據學生的回答,逐步形成本章的知識結構圖,使所學知識系統(tǒng)化.二、回顧與思考1.對頂角、鄰補角。(1)教師提出問題兩條直線相交、構成哪兩種特殊位置關系的角?指出圖

37、(1)中具有這兩種位置的角.(1)(2)(3)如圖(2)中,若AOD=90°,那么直線AB,CD的位置關系如何?如圖(3)中,1與2,2與3,3與4是怎么位置關系的角?(2)學生回答.(3)教師強調:對頂角、鄰補角是由兩條相交面而成的具有特殊位置關系的角,要抓住對頂角的特征,有公共頂角,角的兩邊互為反向延長線;鄰補角的特征:有公共頂有一條公共邊,另一邊互為反向延長線。(4)對頂角有什么性質?(對頂角相等)如果兩個對頂角互補或鄰補角相等,你得到什么結論?讓學生明確,對頂角總是相等,鄰補角一定互補,但加上其他條件如對頂角或鄰補角相等后,那么問題中每個角的度數(shù)就隨之確定,為90°

38、角,這時兩條直線互相垂直.2.垂線及其性質.(1)復習時教師應強調垂線的定義即可以作垂線的制定方法用,也可以作垂線性質用.作判定用時寫成:如圖(2),因為AOD=90°,所以ABCD,這是一個角的“數(shù)”到兩直線垂直的“形”的判斷。作為性質用時寫成:如圖(2),因為ABCD,所以AOD=90°。這是由“形”到“數(shù)”的說理。(2)如圖(4),直線AB、CD、EF相交于點O,CDEF,1=35°,求2的度數(shù).(4)(5)(6)鼓勵學生用不同方法求解.(3)垂線性質1和性質2.讓學生敘述垂線的性質,懂得分清這兩個命題的題設和結論,垂線性質一說得過一點已知直線的垂線存在并且

39、唯一的.學生思考:請回憶一下后體育課測跳遠成績時,教師是怎樣測量的?如圖(5),ABL,BCL,B為重足,那么A、B、C三點在同一條直線上嗎? 為什么?點到直線的距離、兩條平行線的距離.初中階級學習了三種距離,即是距離,就要懂得的共同點:距離都是線段的長度,又要懂得區(qū)別:兩點間的距離是連接這兩點的線段的長度,點到直線距離是直線外一點引已知直線的垂線段的長度,平行線間的距離是某條直線上的一點到另一點平行線的距離.學生練習:如圖(6),四邊形ABCD,ADBC,ABCD,過A作AEBC,過A作AFCD,垂足分別是E、F,量出點A到BC的距離和AB、CD平行線間的距離.請歸納一下與垂直有關的知識中,

40、有哪些重要結論?如垂線的性質1、2,又如兩種直線都垂直于第三條直線,這兩條直線平行,一條直線與平行線中一條垂直,也與另一條垂直3.同位角、內錯角、同旁內角.圖(7)只要求學生從圖形中找出同位角,內錯角,同旁內角.練習:如圖(7),找出1、2、3中哪兩個是同位角、內錯角、同旁內角.4.平行線判定與性質(1)怎樣判別兩條直線是否平行.(2)平行線有什么特征?(3)對比平行線的性質和直線平行的條件,它們有什么異同?(4)為什么研究平面內兩直線的位置關系總是與角聯(lián)系起來?圍繞這些問題展開討論,交流.教師使學生進一步明確:平行線的判定也是由“數(shù)”即角與角的關系到“形”的判斷,而性質則是“形”到“數(shù)”的說

41、理,在研究兩條直線的垂直或平行時共同點是把研究它們的位置關系轉化為研究角或角之間的關系。學生練習:填空:如圖(8),當_時,ac,理由是_;當_時,bc,理由是_;當ab,bc時,_,理由是_.(8)(9)(10)如圖(9),ABCD,A=C,試判斷AD與BC的位置關系?為什么?教師根據學生情況酌情給予引導.5.關于平移,讓學生思考:(1)圖形平移時,連接對應點有什么關系?(2)如何確定圖形平移的方向和平移的距離?(3)你能用平移設計一些圖案嗎?練習:如圖(10),平移四邊形ABCD,使點B移動到點B,畫出平移后的四邊形ABCD.三、作業(yè)課本:P35第六章 實數(shù)6.1.1平方根第一課時【教學目

42、標】知識與技能:通過實際生活中的例子理解算術平方根的概念,會求非負數(shù)的算術平方根并會用符號表示;過程與方法:通過生活中的實例,總結出算術平方根的概念,通過計算非負數(shù)的算術平方根,真正掌握算術平方根的意義。情感態(tài)度與價值觀:通過學習算術平方根,認識數(shù)與人類生活的密切聯(lián)系,建立初步的數(shù)感和符號感,發(fā)展抽象思維,為學生以后學習無理數(shù)做好準備。教學重點:算術平方根的概念和求法。教學難點:算術平方根的求法。教具準備: 三塊大小相等的正方形紙片;學生計算器。教學方法: 自主探究、啟發(fā)引導、小組合作【教學過程】一、情境引入:問題:學校要舉行美術作品比賽,小歐很高興,他想裁出一塊面積為的正方形畫布,畫上自己得

43、意的作品參加比賽,這塊正方形畫布的邊長應取多少?二、探索歸納:1.探索:學生能根據已有的知識即正方形的面積公式:邊長的平方等于面積,求出正方形畫布的邊長為。接下來教師可以再深入地引導此問題:如果正方形的面積分別是1、9、16、36、,那么正方形的邊長分別是多少呢?學生會求出邊長分別是1、3、4、6、,接下來教師可以引導性地提問:上面的問題它們有共同點嗎?它們的本質是什么呢?這個問題學生可能總結不出來,教師需加以引導。上面的問題,實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題。2.歸納:算術平方根的概念:一般地,如果一個正數(shù)x的平方等于a,即x2=a那么這個正數(shù)x叫做a的算術平方根。算術平方根的表

44、示方法:a的算術平方根記為,讀作“根號a”或“二次很號a”,a叫做被開方數(shù)。三、應用:例1、 求下列各數(shù)的算術平方根: 解:因為所以的算術平方根是,即;因為,所以的算術平方根是,即;因為,所以的算術平方根是,即;因為,所以的算術平方根是,即;因為,所以的算術平方根是,即。注:根據算術平方根的定義解題,明確平方與開平方互為逆運算;求帶分數(shù)的算術平方根,需要先把帶分數(shù)化成假分數(shù),然后根據定義去求解; 0的算術平方根是0。由此例題教師可以引導學生思考如下問題:你能求出1,36,100的算術平方根嗎?任意一個負數(shù)有算術平方根嗎?歸納:一個正數(shù)的算術平方根有1個;0的算術平方根是0;負數(shù)沒有算術平方根。

45、即:只有非負數(shù)有算術平方根,如果有意義,那么。注:且這一點對于初學者不太容易理解,教師不要強求,可以在以后的教學中慢慢滲透。例2、 求下列各式的值:(1) (2) (3) (4)分析:此題本質還是求幾個非負數(shù)的算術平方根。解:(1) (2) (3) (4)例3、 求下列各數(shù)的算術平方根: 解:(1)因為,所以;因為,所以;因為,所以;因為,所以。根據學生的學習能力和理解能力可進行如下總結:1、由,可得2、由,可得教師需強調時對兩種情況都成立。四、隨堂練習:1、算術平方根等于本身的數(shù)有。2、求下列各式的值:, , , 3、求下列各數(shù)的算術平方根:, , , ,4、已知求的值。五、課堂小結1、這節(jié)

46、課學習了什么呢? 2、算術平方根的具體意義是怎么樣的? 3、怎樣求一個正數(shù)的算術平方根?六、布置作業(yè) 課本第44頁習題第1、2題教學反思6.1.2平方根第2課時【教學目標】知識與技能:會用計算器求算術平方根;了解無限不循環(huán)小數(shù)的特點;會用算術平方根的知識解決實際問題。過程與方法:通過折紙認識第一個無理數(shù),并通過估計它的大小認識無限不循環(huán)小數(shù)的特點。用計算器計算算術平方根,使學生了解利用計算器可以求出任意一個正數(shù)的算術平方根,再通過一些特殊的例子找出一些數(shù)的算術平方根的規(guī)律,最后讓學生感受算術平方根在實際生活中的應用。情感態(tài)度與價值觀:通過探究的大小,培養(yǎng)學生的估算意識,了解兩個方向無限逼近的數(shù)

47、學思想,并且鍛煉學生克服困難的意志,建立自信心,提高學習熱情。教學重點:認識無限不循環(huán)小數(shù)的特點,會估算一些數(shù)的算術平方根。會用算術平方根的知識解決實際問題。教學難點:認識無限不循環(huán)小數(shù)的特點,會估算一些數(shù)的算術平方根。教學方法: 自主探究、啟發(fā)引導、小組合作教學過程: 一、通過實驗引入:怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?如圖,把兩個小正方形沿對角線剪開,將所得的4個直角三角形拼在一起,就得到一個面積為2的大正方形。你知道這個大正方形的邊長是多少嗎?設大正方形的邊長為,則,由算術平方根的意義可知,所以大正方形的邊長為。二、討論的大?。河缮厦娴膶嶒炍覀冋J識了,它的大小是多少

48、呢?它所表示的數(shù)有什么特征呢?下面我們討論的大小。因為,所以.因為,所以。因為,所以因為,所以如此進行下去,我們發(fā)現(xiàn)它的小數(shù)位數(shù)無限,且小數(shù)部分不循環(huán),像這樣的數(shù)我們成為無限不循環(huán)小數(shù)。=注:這種估算體現(xiàn)了兩個方向向中間無限逼近的數(shù)學思想,學生第一次接觸,不好理解,教師在講解時速度要放慢,可能需要講兩遍。=,是個無限不循環(huán)小數(shù),但是很抽象,沒有辦法全部表示出來它的大小,類似這樣的數(shù)還有很多,比如等,圓周率也是一個無限不循環(huán)小數(shù)。三、用計算器求算術平方根:大多數(shù)計算器都有“”鍵,用它可以求出一個有理數(shù)的算術平方根或近似值。例1、 用計算器求下列各式的值:; (精確到解:(1)依次按鍵,顯示:56

49、.所以(2)依次按鍵2=,顯示:,這是一個近似值。所以注:不同品牌的計算器,按鍵的順序可能有所不同。四、探索規(guī)律:(1)利用計算器計算,并將計算結果填在表中,你發(fā)現(xiàn)了什么規(guī)律?(2)用計算器計算(結果保留4個有效數(shù)字),并利用你發(fā)現(xiàn)的規(guī)律寫出, ,的近似值。你能根據的值求出的值嗎?學生通過計算器可求出(1)的答案,依次是:。從運算結果可以發(fā)現(xiàn),被開方數(shù)擴大或縮小100倍時,它的算術平方根就擴大或縮小10倍。由可得,由的值不能求出的值,因為規(guī)律是被開方數(shù)擴大或縮小100倍時,它的算術平方根才擴大或縮小10倍,而3到30擴大的是10倍,所以不能由此規(guī)律求出。此題學生可獨立完成。五、實際應用:例1、

50、小麗想用一塊面積為的正方形紙片,沿著邊的方向裁出一塊面積為的長方形紙片,使它的長與寬之比為:,不知道能否裁出來,正在發(fā)愁,小明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片。”你同意小明的說法嗎?小麗能否用這塊紙片裁出符合要求的紙片嗎?分析:學生一般認為一定能用一塊面積大的紙片裁出一塊面積小的紙片。通過計算和講解糾正這種錯誤的認識。解:設長方形紙片的長為,寬為。根據邊長與面積的關系可得:,長方形紙片的長為。因為,所以,從而即長方形紙片的長應該大于,而已知正方形紙片的邊長只有,這樣長方形紙片的長將大于正方形紙片的邊長。答:不能同意小明的說法。小麗不能用這塊正方形紙片裁出符合要求的

51、長方形紙片。六、隨堂練習:1.用計算器求下列各式的值:(1) (2) (3) (精確到)2、估計大?。海?)與 (2)與3、已知,求,的值。七、課堂小結1、被開方數(shù)增大或縮小時,其相應的算術平方根也相應地增大或縮小,因此我們可以利用夾值的方法來求出算術平方根的近似值;2、利用計算器可以求出任意正數(shù)的算術平方根的近似值;3、被開方數(shù)擴大(或縮小)與它的算術平方根擴大(或縮?。┑囊?guī)律是怎樣的呢?4、怎樣的數(shù)是無限不循環(huán)小數(shù)?八、布置作業(yè)課本第47頁習題6、1第3、5題教學反思:6.1.3平方根第三課時【教學目標】知識與技能了解平方根的概念,會用根號表示正數(shù)的平方根; 了解開平方與平方互為逆運算,會

52、用平方運算求某些非負數(shù)的平方根過程與方法通過學習平方根,進一步建立數(shù)感和符號感,發(fā)展抽象思維。通過對正數(shù)平方根特點的探究,了解平方根與算術平方根的區(qū)別和聯(lián)系,體驗類比、化歸等問題解決數(shù)學思想方法的運用,提高學生對問題的遷移能力。情感、態(tài)度與價值觀通過對實際生活中問題的解決,讓學生體驗數(shù)學與生活實際是緊密聯(lián)系著的。通過探究活動培養(yǎng)動手能力和鍛煉克服困難的意志,建立自信心,提高學習熱情。教學重點: 了解開方和乘方互為逆運算,弄懂平方根與算術平方根的區(qū)別和聯(lián)系。教學難點:平方根與算術平方根的區(qū)別和聯(lián)系。教學方法: 自主探究、啟發(fā)引導、小組合作教學過程一、情境導入如果一個數(shù)的平方等于9,這個數(shù)是多少?討論:這樣的數(shù)有兩個,它們是3和3.注意中括號的作用又如:,則x等于多少呢?二、探索歸納:1、平方根的概念:如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根即:如果=a,那么x叫做a的平方根求一個數(shù)的平方根的運算,叫做開平方例如:3的平方等于9,9的平方根是3,所以平方與開平方互為逆運算2、觀察:課本P73的圖14.1-2.圖14.1-2中的兩個圖描述了平方與開平方互為逆運算的運算過程,揭示了開平方運算的本質并根據這個關系說出1,4,9的平方根 例4 求下列各數(shù)的平方根。(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論