2.2一元二次方程的解法_第1頁(yè)
2.2一元二次方程的解法_第2頁(yè)
2.2一元二次方程的解法_第3頁(yè)
2.2一元二次方程的解法_第4頁(yè)
2.2一元二次方程的解法_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 因式分解法因式分解法 直接開(kāi)平方法直接開(kāi)平方法 公式法公式法 配方法配方法(方程一邊是方程一邊是0,另一邊整式容易因式分解,另一邊整式容易因式分解)( (x+m)(x+m)2 2=k k0=k k0 )(化方程為一般式化方程為一般式)(二次項(xiàng)系數(shù)為二次項(xiàng)系數(shù)為1,而一次項(xiàng)系數(shù)為偶數(shù),而一次項(xiàng)系數(shù)為偶數(shù))解一元二次方程的方法解一元二次方程的方法2532 xx解方程用三種不同的方法方法方法1方法方法2方法方法32532xx解解:移項(xiàng)移項(xiàng),得得方程左邊因式分解方程左邊因式分解,得得02532 xx0) 13)(2(xx31, 20130221xxxx或方程右邊為零方程右邊為零解題步驟解題步驟用因式

2、分解法解用因式分解法解方程左邊因式分解方程左邊因式分解成成A A. .B=0B=0的形式的形式A=0或或B=0寫(xiě)出方程的兩個(gè)根寫(xiě)出方程的兩個(gè)根2532 xx用配方法解用配方法解.3649652x32352xx.3625323625352xx.364965x.31,221xx解:解:兩邊同時(shí)除以兩邊同時(shí)除以3,得,得:左右兩邊同時(shí)加上左右兩邊同時(shí)加上 ,得,得:開(kāi)平方,開(kāi)平方,得得:二次項(xiàng)系數(shù)化二次項(xiàng)系數(shù)化1步驟步驟移項(xiàng)移項(xiàng)配方配方(配上一次項(xiàng)系數(shù)一半的配上一次項(xiàng)系數(shù)一半的平方平方)寫(xiě)成寫(xiě)成(x+m)2 =k(k0) 的形式的形式開(kāi)平方開(kāi)平方寫(xiě)出方程的兩個(gè)解寫(xiě)出方程的兩個(gè)解2)65(用公式法解用

3、公式法解242bbacxa 2532 xx解解:移項(xiàng)移項(xiàng),得得 這里這里a=3,b=-5,c=-202532 xx)2(345422acb=496753249)5(x.31,221xx解題步驟解題步驟將方程化成一般式將方程化成一般式,并寫(xiě)出并寫(xiě)出a,b,c求出求出b2-4ac的值的值(特別注意特別注意b2-4ac0)代入求根公式代入求根公式寫(xiě)出方程的兩個(gè)根寫(xiě)出方程的兩個(gè)根例例1.1.選擇適當(dāng)?shù)姆椒ń庀铝蟹匠蹋哼x擇適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?9)2(2x542 tt0) 52 ( 4) 32 ( 922mm先考慮開(kāi)平方法先考慮開(kāi)平方法, ,再用因式分解法再用因式分解法; ;最后才用公式法和配方法最后

4、才用公式法和配方法. .能不能用整體能不能用整體思想?思想?例例2. 2. 解方程解方程 2(x-2)2(x-2)2 2+5(x-2)-3=0+5(x-2)-3=0 總結(jié)總結(jié):方程中有括號(hào)時(shí),應(yīng)先用整體思想考慮有沒(méi)有方程中有括號(hào)時(shí),應(yīng)先用整體思想考慮有沒(méi)有簡(jiǎn)單方法,若看不出合適的方法時(shí),則把它去括號(hào)并簡(jiǎn)單方法,若看不出合適的方法時(shí),則把它去括號(hào)并整理為一般形式再選取合理的方法。整理為一般形式再選取合理的方法。變變1: 2(x-2)2(x-2)2 2+5(2-x)-3=0+5(2-x)-3=0再變?yōu)椋涸僮優(yōu)椋?2(x-2)2(x-2)2 2+5x-13=0+5x-13=02(x-2)2(x-2)

5、2 2+ +5x-10-35x-10-3=0=0變變2: 2(2-x)2(2-x)2 2+5(2-x)-3=0+5(2-x)-3=0 (2m+3) (2m+3)2 2=2(4m+7)=2(4m+7) 2(x-2)2(x-2)2 2+ +5(x-2)5(x-2)-3=0-3=0比一比誰(shuí)最快:比一比誰(shuí)最快: (y+ )(y- )=2(2y-3) (y+ )(y- )=2(2y-3) 3t(t+2)=2(t+2) 3t(t+2)=2(t+2) x x2 2=4 x-11=4 x-11 (x+101) (x+101)2 2-10(x+101)+9=0-10(x+101)+9=0223y1=y2=2t1

6、=-2,t2=2/3x1= , x2=x1=-92,x2=-100132 132 能力能力拓展解關(guān)于解關(guān)于x x的方程:的方程:065622mxxm)0(m其中022 xx小結(jié):小結(jié):ax2+c=0 =ax2+bx=0 =ax2+bx+c=0 =因式分解法因式分解法公式法(配方法)公式法(配方法)2、公式法雖然是萬(wàn)能的,對(duì)任何一元二次方程都適用,、公式法雖然是萬(wàn)能的,對(duì)任何一元二次方程都適用,但不一定但不一定 是最簡(jiǎn)單的,因此在解方程時(shí)我們首先考慮是最簡(jiǎn)單的,因此在解方程時(shí)我們首先考慮能否應(yīng)用能否應(yīng)用“直接開(kāi)平方法直接開(kāi)平方法”、“因式分解法因式分解法”等簡(jiǎn)單方等簡(jiǎn)單方法,若不行,再考慮公式法(適當(dāng)也可考慮配方法)法,若不行,再考慮公式法(適當(dāng)也可考慮配方法)3、方程中有括號(hào)時(shí),應(yīng)先用整體思想考慮有沒(méi)有簡(jiǎn)單、方程中有括號(hào)時(shí),應(yīng)先用整體思想考慮有沒(méi)有簡(jiǎn)單方法,若看不出合適的方法時(shí),則把它去括號(hào)并整理為方法,若看不出合適的方法時(shí),則把它去括號(hào)并整理為一般形式再選取合理的方法。一般形式再選取合理的方法。1、直接開(kāi)平方法直接開(kāi)平方法因式分解法因式分解法結(jié)束寄語(yǔ)結(jié)束寄語(yǔ) 配方法和

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論