第六節(jié) 函數(shù)的連續(xù)與間斷_第1頁
第六節(jié) 函數(shù)的連續(xù)與間斷_第2頁
第六節(jié) 函數(shù)的連續(xù)與間斷_第3頁
第六節(jié) 函數(shù)的連續(xù)與間斷_第4頁
第六節(jié) 函數(shù)的連續(xù)與間斷_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、二、二、 函數(shù)的間斷點函數(shù)的間斷點 一、一、 函數(shù)連續(xù)性的定義函數(shù)連續(xù)性的定義 第八節(jié)函數(shù)的連續(xù)性與間斷點 第一章 可見 , 函數(shù))(xf在點0 x一、一、 函數(shù)連續(xù)性的定義函數(shù)連續(xù)性的定義定義定義:)(xfy 在0 x的某鄰域內(nèi)有定義 , , )()(lim00 xfxfxx則稱函數(shù).)(0連續(xù)在xxf(1) )(xf在點0 x即)(0 xf(2) 極限)(lim0 xfxx(3). )()(lim00 xfxfxx設(shè)函數(shù)連續(xù)必須具備下列條件:存在 ;且有定義 ,存在 ;continue)()(lim, ),(000 xPxPxxx若)(xf在某區(qū)間上每一點都連續(xù) , 則稱它在該區(qū)間上連續(xù)

2、, 或稱它為該區(qū)間上的連續(xù)函數(shù)連續(xù)函數(shù) . ,baC例如例如,nnxaxaaxP10)(在),(上連續(xù) .( 有理整函數(shù) )又如又如, 有理分式函數(shù))()()(xQxPxR在其定義域內(nèi)連續(xù).在閉區(qū)間,ba上的連續(xù)函數(shù)的集合記作只要,0)(0 xQ都有)()(lim00 xRxRxx對自變量的增量,0 xxx有函數(shù)的增量)()(0 xfxfy)()(00 xfxxf)(xfy xoy0 xxxy)()(lim00 xfxfxx)()(lim000 xfxxfx0lim0yx)()()(000 xfxfxf左連續(xù)右連續(xù),0,0當(dāng)xxx0時, 有yxfxf)()(0函數(shù)0 x)(xf在點連續(xù)有下列等

3、價命題:例例. 證明函數(shù)xysin在),(內(nèi)連續(xù) .證證: ),(xxxxysin)sin()cos(sin222xxx)cos(sin222xxxy122 xx0 x即0lim0yx這說明xysin在),(內(nèi)連續(xù) .同樣可證: 函數(shù)xycos在),(內(nèi)連續(xù) .0在在二、二、 函數(shù)的間斷點函數(shù)的間斷點(1) 函數(shù))(xf0 x(2) 函數(shù))(xf0 x)(lim0 xfxx不存在;(3) 函數(shù))(xf0 x)(lim0 xfxx存在 , 但)()(lim00 xfxfxx 不連續(xù) :0 x設(shè)0 x在點)(xf的某去心鄰域內(nèi)有定義 , 則下列情形這樣的點0 x之一函數(shù) f (x) 在點雖有定義

4、, 但雖有定義 , 且稱為間斷點間斷點 . 在無定義 ;間斷點分類間斷點分類: :第一類間斷點第一類間斷點:)(0 xf及)(0 xf均存在 , )()(00 xfxf若稱0 x, )()(00 xfxf若稱0 x第二類間斷點第二類間斷點:)(0 xf及)(0 xf中至少一個不存在 ,稱0 x若其中有一個為振蕩 ,稱0 x若其中有一個為,為可去間斷點 .為跳躍間斷點 .為無窮間斷點無窮間斷點 .為振蕩間斷點振蕩間斷點 .xytan) 1 (2x為其無窮間斷點 .0 x為其振蕩間斷點 .xy1sin) 2(1x為可去間斷點 .11)3(2xxyxoy1例如例如:xytan2xyoxyxy1sin

5、01) 1 (1)(lim1fxfx顯然1x為其可去間斷點 .1,1,)(21xxxxfy(4)xoy211(5) 0,10,00,1)(xxxxxxfyxyo11, 1)0(f1)0(f0 x為其跳躍間斷點 .內(nèi)容小結(jié)內(nèi)容小結(jié))()(lim00 xfxfxx0)()(lim000 xfxxfx)()()(000 xfxfxf左連續(xù)右連續(xù))(. 2xf0 x第一類間斷點可去間斷點跳躍間斷點左右極限都存在 第二類間斷點無窮間斷點振蕩間斷點左右極限至少有一個不存在在點間斷的類型)(. 1xf0 x在點連續(xù)的等價形式思考與練習(xí)思考與練習(xí)1. 討論函數(shù)231)(22xxxxfx = 2 是第二類無窮間斷點 .間斷點的類型.2. 設(shè)0,0,sin)(21xxaxxxfx_,a時提示提示:,0)0(f)0(f)0(fa03. P65 題 5)(xf為連續(xù)函數(shù).答案答案: x = 1 是第一類可去間斷點 ,P65 題題5 提示提示:xxxfsin1sin1)() 1 ()()2(xf有理點x,1無理點x,1)()3(xf有理點x,x無理點x,xxyo11xyoEx: 確定函數(shù)間斷點的類型.xxexf111)(解解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論