版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、數(shù)學高考基礎知識、常見結論詳解一、集合與簡易邏輯:一、理解集合中的有關概念(1)集合中元素的特征: 確定性 , 互異性 , 無序性 。集合元素的互異性:如:,求;(2)集合與元素的關系用符號,表示。(3)常用數(shù)集的符號表示:自然數(shù)集 ;正整數(shù)集 、 ;整數(shù)集 ;有理數(shù)集 、實數(shù)集 。(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。 注意:區(qū)分集合中元素的形式:如:;(5)空集是指不含任何元素的集合。(、和的區(qū)別;0與三者間的關系) 空集是任何集合的子集,是任何非空集合的真子集。注意:條件為,在討論的時候不要遺忘了的情況。如:,如果,求的取值。二、集合間的關系及其運算(1)符號“”是表示
2、元素與集合之間關系的,立體幾何中的體現(xiàn) 點與直線(面)的關系 ; 符號“”是表示集合與集合之間關系的,立體幾何中的體現(xiàn) 面與直線(面)的關系 。(2); (3)對于任意集合,則:; ; ; ; ; ; ;(4)若為偶數(shù),則 ;若為奇數(shù),則 ;若被3除余0,則 ;若被3除余1,則 ;若被3除余2,則 ;三、集合中元素的個數(shù)的計算: (1)若集合中有個元素,則集合的所有不同的子集個數(shù)為_,所有真子集的個數(shù)是_,所有非空真子集的個數(shù)是 。(2)中元素的個數(shù)的計算公式為: ;(3)韋恩圖的運用:四、滿足條件,滿足條件,若 ;則是的充分非必要條件;若 ;則是的必要非充分條件;若 ;則是的充要條件;若 ;
3、則是的既非充分又非必要條件;五、原命題與逆否命題,否命題與逆命題具有相同的 ;注意:“若,則”在解題中的運用,如:“”是“”的 條件。六、反證法:當證明“若,則”感到困難時,改證它的等價命題“若則”成立, 步驟:1、假設結論反面成立;2、從這個假設出發(fā),推理論證,得出矛盾;3、由矛盾判斷假設不成立,從而肯定結論正確。矛盾的來源:1、與原命題的條件矛盾;2、導出與假設相矛盾的命題;3、導出一個恒假命題。適用與待證命題的結論涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼時。正面詞語等于大于小于是都是至多有一個否定正面詞語至少有一個任意的所有的至多有n個任意兩個否定二、函數(shù)一、映射與函
4、數(shù):(1)映射的概念: (2)一一映射:(3)函數(shù)的概念:如:若,;問:到的映射有 個,到的映射有 個;到的函數(shù)有 個,若,則到的一一映射有 個。函數(shù)的圖象與直線交點的個數(shù)為 個。二、函數(shù)的三要素: , , 。相同函數(shù)的判斷方法: ; (兩點必須同時具備)(1)函數(shù)解析式的求法:定義法(拼湊):換元法:待定系數(shù)法:賦值法: (2)函數(shù)定義域的求法:,則 ; 則 ;,則 ; 如:,則 ;含參問題的定義域要分類討論;如:已知函數(shù)的定義域是,求的定義域。對于實際問題,在求出函數(shù)解析式后;必須求出其定義域,此時的定義域要根據(jù)實際意義來確定。如:已知扇形的周長為20,半徑為,扇形面積為,則 ;定義域為
5、。(3)函數(shù)值域的求法:配方法:轉化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉化為型如:的形式;逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;換元法:通過變量代換轉化為能求值域的函數(shù),化歸思想;三角有界法:轉化為只含正弦、余弦的函數(shù),運用三角函數(shù)有界性來求值域;基本不等式法:轉化成型如:,利用平均值不等式公式來求值域;單調性法:函數(shù)為單調函數(shù),可根據(jù)函數(shù)的單調性求值域。 數(shù)形結合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結合的方法來求值域。求下列函數(shù)的值域:(2種方法);(2種方法);(2種方法);三、函數(shù)的性質:函數(shù)的單調性、奇偶性、周期性單調性:
6、定義:注意定義是相對與某個具體的區(qū)間而言。判定方法有:定義法(作差比較和作商比較)導數(shù)法(適用于多項式函數(shù))復合函數(shù)法和圖像法。應用:比較大小,證明不等式,解不等式。奇偶性:定義:注意區(qū)間是否關于原點對稱,比較f(x) 與f(-x)的關系。f(x) f(-x)=0 f(x) =f(-x) f(x)為偶函數(shù);f(x)+f(-x)=0 f(x) =f(-x) f(x)為奇函數(shù)。判別方法:定義法,圖像法,復合函數(shù)法應用:把函數(shù)值進行轉化求解。周期性:定義:若函數(shù)f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。其他:若函數(shù)f(x)對定義域內的任意x滿足:f(x+a)=
7、f(xa),則2a為函數(shù)f(x)的周期.應用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。四、圖形變換:函數(shù)圖像變換:(重點)要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)平移變換y=f(x)y=f(x+a),y=f(x)+b注意:()有系數(shù),要先提取系數(shù)。如:把函數(shù)()經(jīng)過平移得到函數(shù)()的圖象。()會結合向量的平移,理解按照向量(,)平移的意義。對稱變換y=f(x)y=f(x),關于軸對稱y=f(x)y=f(x) ,關于軸對稱y=f(x)y=f|x|,把軸上方的圖象保留,軸下方的圖象關于軸對稱y=f(x)y=|
8、f(x)|把軸右邊的圖象保留,然后將軸右邊部分關于軸對稱。(注意:它是一個偶函數(shù))伸縮變換:y=f(x)y=f(x), y=f(x)y=Af(x+)具體參照三角函數(shù)的圖象變換。一個重要結論:若f(ax)f(a+x),則函數(shù)y=f(x)的圖像關于直線x=a對稱;xOyy=f(x)(2,0)(0,-1)如:的圖象如圖,作出下列函數(shù)圖象:(1);(2);(3);(4);(5);(6);(7);(8);(9)。五、反函數(shù):(1)定義:(2)函數(shù)存在反函數(shù)的條件: ;(3)互為反函數(shù)的定義域與值域的關系: ;(4)求反函數(shù)的步驟:將看成關于的方程,解出,若有兩解,要注意解的選擇;將互換,得;寫出反函數(shù)的
9、定義域(即的值域)。(5)互為反函數(shù)的圖象間的關系: ;(6)原函數(shù)與反函數(shù)具有相同的單調性;(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。如:求下列函數(shù)的反函數(shù):;七、常用的初等函數(shù):(1)一元一次函數(shù):,當時,是增函數(shù);當時,是減函數(shù);(2)一元二次函數(shù):一般式:;對稱軸方程是 ;頂點為 ;兩點式:;對稱軸方程是 ;與軸的交點為 ;頂點式:;對稱軸方程是 ;頂點為 ;一元二次函數(shù)的單調性: 當時: 為增函數(shù); 為減函數(shù);當時: 為增函數(shù); 為減函數(shù);二次函數(shù)求最值問題:首先要采用配方法,化為的形式,、若頂點的橫坐標在給定的區(qū)間上,則時:在頂點處取得最小值,
10、最大值在距離對稱軸較遠的端點處取得;時:在頂點處取得最大值,最小值在距離對稱軸較遠的端點處取得;、若頂點的橫坐標不在給定的區(qū)間上,則時:最小值在距離對稱軸較近的端點處取得,最大值在距離對稱軸較遠的端點處取得;時:最大值在距離對稱軸較近的端點處取得,最小值在距離對稱軸較遠的端點處取得; 有三個類型題型:(1)頂點固定,區(qū)間也固定。如:(2)頂點含參數(shù)(即頂點變動),區(qū)間固定,這時要討論頂點橫坐標何時在區(qū)間之內,何時在區(qū)間之外。(3)頂點固定,區(qū)間變動,這時要討論區(qū)間中的參數(shù)二次方程實數(shù)根的分布問題: 設實系數(shù)一元二次方程的兩根為;則:根的情況等價命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一根充
11、要條件注意:若在閉區(qū)間討論方程有實數(shù)解的情況,可先利用在開區(qū)間上實根分布的情況,得出結果,在令和檢查端點的情況。(3)反比例函數(shù):(4)指數(shù)函數(shù):指數(shù)運算法則: ; ; 。指數(shù)函數(shù):y= (a>o,a1),圖象恒過點(0,1),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數(shù)圖象的簡圖。(5)對數(shù)函數(shù):指數(shù)運算法則: ; ; ;對數(shù)函數(shù):y= (a>o,a1) 圖象恒過點(1,0),單調性與a的值有關,在解題中,往往注意要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函數(shù)圖象的簡圖。(1)與的圖象
12、關系是 ;(2)比較兩個指數(shù)或對數(shù)的大小的基本方法是構造相應的指數(shù)或對數(shù)函數(shù),若底數(shù)不相同時轉化為同底數(shù)的指數(shù)或對數(shù),還要注意與1比較或與0比較。(3)已知函數(shù)的定義域為,求的取值范圍。已知函數(shù)的值域為,求的取值范圍。六、的圖象: 定義域: ;值域: ; 奇偶性: ; 單調性: 是增函數(shù); 是減函數(shù)。七、補充內容:抽象函數(shù)的性質所對應的一些具體特殊函數(shù)模型: 正比例函數(shù); ; ; ;三、導 數(shù)求導法則:(c)/=0 這里c是常數(shù)。即常數(shù)的導數(shù)值為。 (xn)/=nxn1 特別地:(x)/=1 (x1)/= ()/=x-2 (f(x)±g(x)/= f/(x)±g/(x) (
13、kf(x)/= kf/(x) 導數(shù)的幾何物理意義:kf/(x0)表示過曲線y=f(x)上的點P(x0,f(x0)的切線的斜率。Vs/(t)表示即時速度。a=v/(t) 表示加速度。導數(shù)的應用:求切線的斜率。導數(shù)與函數(shù)的單調性的關系與為增函數(shù)的關系。能推出為增函數(shù),但反之不一定。如函數(shù)在上單調遞增,但,是為增函數(shù)的充分不必要條件。時,與為增函數(shù)的關系。若將的根作為分界點,因為規(guī)定,即摳去了分界點,此時為增函數(shù),就一定有。當時,是為增函數(shù)的充分必要條件。與為增函數(shù)的關系。為增函數(shù),一定可以推出,但反之不一定,因為,即為或。當函數(shù)在某個區(qū)間內恒有,則為常數(shù),函數(shù)不具有單調性。是為增函數(shù)的必要不充分條
14、件。函數(shù)的單調性是函數(shù)一條重要性質,也是高中階段研究的重點,我們一定要把握好以上三個關系,用導數(shù)判斷好函數(shù)的單調性。因此新教材為解決單調區(qū)間的端點問題,都一律用開區(qū)間作為單調區(qū)間,避免討論以上問題,也簡化了問題。但在實際應用中還會遇到端點的討論問題,要謹慎處理。單調區(qū)間的求解過程,已知 (1)分析 的定義域;(2)求導數(shù) (3)解不等式,解集在定義域內的部分為增區(qū)間(4)解不等式,解集在定義域內的部分為減區(qū)間。我們在應用導數(shù)判斷函數(shù)的單調性時一定要搞清以下三個關系,才能準確無誤地判斷函數(shù)的單調性。以下以增函數(shù)為例作簡單的分析,前提條件都是函數(shù)在某個區(qū)間內可導。求極值、求最值。注意:極值最值。函
15、數(shù)f(x)在區(qū)間a,b上的最大值為極大值和f(a) 、f(b)中最大的一個。最小值為極小值和f(a) 、f(b)中最小的一個。 f/(x0)0不能得到當x=x0時,函數(shù)有極值。但是,當x=x0時,函數(shù)有極值 f/(x0)0判斷極值,還需結合函數(shù)的單調性說明。4.導數(shù)的常規(guī)問題:(1)刻畫函數(shù)(比初等方法精確細微);(2)同幾何中切線聯(lián)系(導數(shù)方法可用于研究平面曲線的切線);(3)應用問題(初等方法往往技巧性要求較高,而導數(shù)方法顯得簡便)等關于次多項式的導數(shù)問題屬于較難類型。2關于函數(shù)特征,最值問題較多,所以有必要專項討論,導數(shù)法求最值要比初等方法快捷簡便。3導數(shù)與解析幾何或函數(shù)圖象的混合問題是
16、一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。四、不等式一、不等式的基本性質:注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用于不成立的命題。(2)注意課本上的幾個性質,另外需要特別注意:若ab>0,則。即不等式兩邊同號時,不等式兩邊取倒數(shù),不等號方向要改變。如果對不等式兩邊同時乘以一個代數(shù)式,要注意它的正負號,如果正負號未定,要注意分類討論。圖象法:利用有關函數(shù)的圖象(指數(shù)函數(shù)、對數(shù)函數(shù)、二次函數(shù)、三角函數(shù)的圖象),直接比較大小。中介值法:先把要比較的代數(shù)式與“0”比,與“1”比,然后再比較它們的大小二、均值不等式:兩個數(shù)的算術平均數(shù)不小于它們的幾何平均
17、數(shù)。若,則(當且僅當時取等號)基本變形: ; ;若,則,基本應用:放縮,變形;求函數(shù)最值:注意:一正二定三取等;積定和小,和定積大。當(常數(shù)),當且僅當 時, ;當(常數(shù)),當且僅當 時, ;常用的方法為:拆、湊、平方;如:函數(shù)的最小值 。若正數(shù)滿足,則的最小值 。三、絕對值不等式: 注意:上述等號“”成立的條件; 四、常用的基本不等式:(1)設,則(當且僅當 時取等號)(2)(當且僅當 時取等號);(當且僅當 時取等號)(3); ;五、證明不等式常用方法:(1)比較法:作差比較:作差比較的步驟:作差:對要比較大小的兩個數(shù)(或式)作差。變形:對差進行因式分解或配方成幾個數(shù)(或式)的完全平方和。
18、判斷差的符號:結合變形的結果及題設條件判斷差的符號。注意:若兩個正數(shù)作差比較有困難,可以通過它們的平方差來比較大小。(2)綜合法:由因導果。(3)分析法:執(zhí)果索因?;静襟E:要證只需證,只需證(4)反證法:正難則反。(5)放縮法:將不等式一側適當?shù)姆糯蠡蚩s小以達證題目的。放縮法的方法有:添加或舍去一些項,如:;將分子或分母放大(或縮?。├没静坏仁?,如:;利用常用結論:、;、 ; (程度大)、 ; (程度?。?)換元法:換元的目的就是減少不等式中變量,以使問題化難為易,化繁為簡,常用的換元有三角換元和代數(shù)換元。如:已知,可設;已知,可設();已知,可設;已知,可設;(7)構造法:通過構造函
19、數(shù)、方程、數(shù)列、向量或不等式來證明不等式;六、不等式的解法: (1)一元一次不等式:、:若,則 ;若,則 ;、:若,則 ;若,則 ;(2)一元二次不等式: 一元二次不等式二次項系數(shù)小于零的,同解變形為二次項系數(shù)大于零;注:要對進行討論:(5)絕對值不等式:若,則 ; ;注意:(1).幾何意義: ;: ;(2)解有關絕對值的問題,考慮去絕對值,去絕對值的方法有:對絕對值內的部分按大于、等于、小于零進行討論去絕對值;若 則 ;若則 ;若則 ;(3).通過兩邊平方去絕對值;需要注意的是不等號兩邊為非負值。(4).含有多個絕對值符號的不等式可用“按零點分區(qū)間討論”的方法來解。(6)分式不等式的解法:通
20、解變形為整式不等式; ; ; ; ;(7)不等式組的解法:分別求出不等式組中,每個不等式的解集,然后求其交集,即是這個不等式組的解集,在求交集中,通常把每個不等式的解集畫在同一條數(shù)軸上,取它們的公共部分。(8)解含有參數(shù)的不等式: 解含參數(shù)的不等式時,首先應注意考察是否需要進行分類討論.如果遇到下述情況則一般需要討論:不等式兩端乘除一個含參數(shù)的式子時,則需討論這個式子的正、負、零性.在求解過程中,需要使用指數(shù)函數(shù)、對數(shù)函數(shù)的單調性時,則需對它們的底數(shù)進行討論.在解含有字母的一元二次不等式時,需要考慮相應的二次函數(shù)的開口方向,對應的一元二次方程根的狀況(有時要分析),比較兩個根的大小,設根為(或
21、更多)但含參數(shù),要分、討論。五、數(shù)列本章是高考命題的主體內容之一,應切實進行全面、深入地復習,并在此基礎上,突出解決下述幾個問題:(1)等差、等比數(shù)列的證明須用定義證明,值得注意的是,若給出一個數(shù)列的前項和,則其通項為若滿足則通項公式可寫成.(2)數(shù)列計算是本章的中心內容,利用等差數(shù)列和等比數(shù)列的通項公式、前項和公式及其性質熟練地進行計算,是高考命題重點考查的內容.(3)解答有關數(shù)列問題時,經(jīng)常要運用各種數(shù)學思想.善于使用各種數(shù)學思想解答數(shù)列題,是我們復習應達到的目標. 函數(shù)思想:等差等比數(shù)列的通項公式求和公式都可以看作是的函數(shù),所以等差等比數(shù)列的某些問題可以化為函數(shù)問題求解.分類討論思想:用
22、等比數(shù)列求和公式應分為及;已知求時,也要進行分類;整體思想:在解數(shù)列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整體思想求解.(4)在解答有關的數(shù)列應用題時,要認真地進行分析,將實際問題抽象化,轉化為數(shù)學問題,再利用有關數(shù)列知識和方法來解決.解答此類應用題是數(shù)學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關的等比數(shù)列的第幾項不要弄錯.一、基本概念:1、 數(shù)列的定義及表示方法:2、 數(shù)列的項與項數(shù):3、 有窮數(shù)列與無窮數(shù)列:4、 遞增(減)、擺動、循環(huán)數(shù)列:5、 數(shù)列an的通項公式an:6、 數(shù)列的前n項和公式Sn:7、 等差數(shù)列、公差d、等差數(shù)列的結構:8、 等比數(shù)
23、列、公比q、等比數(shù)列的結構: 二、基本公式:9、一般數(shù)列的通項an與前n項和Sn的關系:an=10、等差數(shù)列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d0時,an是關于n的一次式;當d=0時,an是一個常數(shù)。11、等差數(shù)列的前n項和公式:Sn= Sn= Sn=當d0時,Sn是關于n的二次式且常數(shù)項為0;當d=0時(a10),Sn=na1是關于n的正比例式。12、等比數(shù)列的通項公式: an= a1 qn-1 an= ak qn-k (其中a1為首項、ak為已知的第k項,an0)13、等比數(shù)列的前n項和公式:當q=1時,Sn=n a1
24、 (是關于n的正比例式);當q1時,Sn= Sn=三、有關等差、等比數(shù)列的結論14、等差數(shù)列an的任意連續(xù)m項的和構成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍為等差數(shù)列。15、等差數(shù)列an中,若m+n=p+q,則16、等比數(shù)列an中,若m+n=p+q,則17、等比數(shù)列an的任意連續(xù)m項的和構成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍為等比數(shù)列。18、兩個等差數(shù)列an與bn的和差的數(shù)列an+bn、an-bn仍為等差數(shù)列。19、兩個等比數(shù)列an與bn的積、商、倒數(shù)組成的數(shù)列anbn、仍為等比數(shù)列。20、等差數(shù)列an的任意等距離的項構成的數(shù)列仍為等差數(shù)
25、列。21、等比數(shù)列an的任意等距離的項構成的數(shù)列仍為等比數(shù)列。22、三個數(shù)成等差的設法:a-d,a,a+d;四個數(shù)成等差的設法:a-3d,a-d,a+d,a+3d23、三個數(shù)成等比的設法:a/q,a,aq;四個數(shù)成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什么?)24、an為等差數(shù)列,則 (c>0)是等比數(shù)列。25、bn(bn>0)是等比數(shù)列,則logcbn (c>0且c1) 是等差數(shù)列。26. 在等差數(shù)列中:(1)若項數(shù)為,則 (2)若數(shù)為則, , 27. 在等比數(shù)列中:(1) 若項數(shù)為,則 (2)若數(shù)為則,四、數(shù)列求和的常用方法:公式法、裂項相消法、錯位相減法、
26、倒序相加法等。關鍵是找數(shù)列的通項結構。28、分組法求數(shù)列的和:如an=2n+3n 29、錯位相減法求和:如an=(2n-1)2n30、裂項法求和:如an=1/n(n+1)31、倒序相加法求和:如an=32、求數(shù)列an的最大、最小項的方法: an+1-an= 如an= -2n2+29n-3 (an>0) 如an= an=f(n) 研究函數(shù)f(n)的增減性 如an=33、在等差數(shù)列中,有關Sn 的最值問題常用鄰項變號法求解: (1)當 >0,d<0時,滿足 的項數(shù)m使得取最大值.(2)當 <0,d>0時
27、,滿足 的項數(shù)m使得取最小值。在解含絕對值的數(shù)列最值問題時,注意轉化思想的應用。六、平面向量1基本概念:向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量。2 加法與減法的代數(shù)運算:(1)(2)若a=(),b=()則ab=()向量加法與減法的幾何表示:平行四邊形法則、三角形法則。以向量=、=為鄰邊作平行四邊形ABCD,則兩條對角線的向量=+,=,=且有+向量加法有如下規(guī)律:=(交換律); +(+c)=(+ )+c (結合律); +0= ()=0.3實數(shù)與向量的積:實數(shù)與向量的積是一個向量。(1)=·(2) 當0時,與的方向相同;當0時,與的方
28、向相反;當=0時,=0 (3)若=(),則·=()兩個向量共線的充要條件:(1) 向量b與非零向量共線的充要條件是有且僅有一個實數(shù),使得b=(2) 若=(),b=()則b平面向量基本定理:若e1、e2是同一平面內的兩個不共線向量,那么對于這一平面內的任一向量,有且只有一對實數(shù),使得=e1+ e24P分有向線段所成的比:設P1、P2是直線上兩個點,點P是上不同于P1、P2的任意一點,則存在一個實數(shù)使=,叫做點P分有向線段所成的比。當點P在線段上時,0;當點P在線段或的延長線上時,0;分點坐標公式:若=;的坐標分別為(),(),();則 (1), 中點坐標公式:5 向量的數(shù)量積:(1)向
29、量的夾角:已知兩個非零向量與b,作=, =b,則AOB= ()叫做向量與b的夾角。(2)兩個向量的數(shù)量積:已知兩個非零向量與b,它們的夾角為,則·b=·bcos其中bcos稱為向量b在方向上的投影(3)向量的數(shù)量積的性質:若=(),b=()則e·=·e=cos (e為單位向量);b·b=0(,b為非零向量);=;cos=(4) 向量的數(shù)量積的運算律:·b=b·()·b=(·b)=·(b);(b)·c=·c+b·c6.主要思想與方法:本章主要樹立數(shù)形轉化和結合的觀點,
30、以數(shù)代形,以形觀數(shù),用代數(shù)的運算處理幾何問題,特別是處理向量的相關位置關系,正確運用共線向量和平面向量的基本定理,計算向量的模、兩點的距離、向量的夾角,判斷兩向量是否垂直等。由于向量是一新的工具,它往往會與三角函數(shù)、數(shù)列、不等式、解幾等結合起來進行綜合考查,是知識的交匯點。七、立體幾何1.平面的基本性質:掌握三個公理及推論,會說明共點、共線、共面問題。能夠用斜二測法作圖。2.空間兩條直線的位置關系:平行、相交、異面的概念;會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。3.直線與平面位置關系:平行、直線在平面內、直線與平面相交。直線與平面平行的判斷方法及性質,判定定
31、理是證明平行問題的依據(jù)。直線與平面垂直的證明方法有哪些?直線與平面所成的角:關鍵是找它在平面內的射影,范圍是00.900三垂線定理及其逆定理:每年高考試題都要考查這個定理. 三垂線定理及其逆定理主要用于證明垂直關系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點到直線的垂線.4.平面與平面(1)位置關系:平行、相交,(垂直是相交的一種特殊情況)(2)掌握平面與平面平行的證明方法和性質。(3)掌握平面與平面垂直的證明方法和性質定理。尤其是已知兩平面垂直,一般是依據(jù)性質定理,可以證明線面垂直。(4)兩平面間的距離問題點到面的距離問題(5)二面角。二面角的平面交的作法及求法:定義法
32、,一般要利用圖形的對稱性;一般在計算時要解斜三角形;垂線、斜線、射影法,一般要求平面的垂線好找,一般在計算時要解一個直角三角形。射影面積法,一般是二面交的兩個面只有一個公共點,兩個面的交線不容易找到時用此法。5棱柱(1)掌握棱柱的定義、分類,理解直棱柱、正棱柱的性質。(2)掌握長方體的對角線的性質。(3)平行六面體直平行六面體長方體正四棱柱正方體這些幾何體之間的聯(lián)系和區(qū)別,以及它們的特有性質。(4)S側各側面的面積和。思考:對于特殊的棱柱,又如何計算?(5)V=Sh 特殊的棱柱的體積如何計算?6棱錐 棱錐的定義、正棱錐的定義(底面是正多邊形,頂點在底面上的射影是底面的中心) 相關計算:S側各側
33、面的面積和,V=Sh7球的相關概念:S球=4R2V球R3球面距離的概念8正多面體:掌握定義和正多面體的種數(shù)(是哪幾個?)。掌握歐拉公式:V+F-E=2 其中:V頂點數(shù)E棱數(shù)F面數(shù)9會用反證法證明簡單的命題。如兩直線異面。主要思想與方法:1計算問題:(1)空間角的計算步驟:一作、二證、三算異面直線所成的角 范圍:0°90° 方法:平移法;補形法.直線與平面所成的角 范圍:0°90° 方法:關鍵是作垂線,找射影.二面角 方法:定義法;三垂線定理及其逆定理;垂面法. 注:二面角的計算也可利用射影面積公式S=Scos來計算(2)空間距離(1)兩點之間的距離.(2
34、)點到直線的距離.(3)點到平面的距離.(4)兩條平行線間的距離.(5)兩條異面直線間的距離.(6)平面的平行直線與平面之間的距離.(7)兩個平行平面之間的距離.七種距離都是指它們所在的兩個點集之間所含兩點的距離中最小的距離.七種距離之間有密切聯(lián)系,有些可以相互轉化,如兩條平行線的距離可轉化為求點到直線的距離,平行線面間的距離或平行平面間的距離都可轉化成點到平面的距離.在七種距離中,求點到平面的距離是重點,求兩條異面直線間的距離是難點.求點到平面的距離:(1)直接法,即直接由點作垂線,求垂線段的長.(2)轉移法,轉化成求另一點到該平面的距離.(3)體積法.求異面直線的距離:(1)定義法,即求公
35、垂線段的長.(2)轉化成求直線與平面的距離.(3)函數(shù)極值法,依據(jù)是兩條異面直線的距離是分別在兩條異面直線上兩點間距離中最小的.2平面圖形的翻折,要注意翻折前后的長度、角度、位置的變化,翻折前后在同一個三角形中的角度、長度不變3在解答立體幾何的有關問題時,應注意使用轉化的思想: 利用構造矩形、直角三角形、直角梯形將有關棱柱、棱錐的問題轉化成平面圖形去解決.將空間圖形展開是將立體幾何問題轉化成為平面圖形問題的一種常用方法.補法把不規(guī)則的圖形轉化成規(guī)則圖形,把復雜圖形轉化成簡單圖形.利用三棱錐體積的自等性,將求點到平面的距離等問題轉化成求三棱錐的高.平行轉化垂直轉化八、平面解析幾何(一)直線與圓知
36、識要點。OK直線的傾斜角與斜率k=tg,直線的傾斜角一定存在,范圍是0,,但斜率不一定存在。牢記下列圖像。斜率的求法:依據(jù)直線方程依據(jù)傾斜角依據(jù)兩點的坐標直線方程的幾種形式,能根據(jù)條件,合理的寫出直線的方程;能夠根據(jù)方程,說出幾何意義。兩條直線的位置關系,能夠說出平行和垂直的條件。會判斷兩條直線的位置關系。(斜率相等還有可能重合)兩條直線的交角:區(qū)別到角和夾角兩個不同概念。點到直線的距離公式。會用一元不等式表示區(qū)域。能夠解決簡單的線性規(guī)劃問題。曲線與方程的概念,會由幾何條件列出曲線方程。圓的標準方程:(xa)2+(yb)2=r2圓的一般方程:x2+y2+Dx+Ey+F=0注意表示圓的條件。圓的
37、參數(shù)方程:掌握圓的幾何性質,會判斷直線與圓、圓與圓的位置關系。會求圓的相交弦、切線問題。圓錐曲線方程(二)圓錐曲線1橢圓及其標準方程雙曲線及其標準方程:拋物線及其標準方程:直線與圓錐曲線:注意點:(1)注意防止由于“零截距”和“無斜率”造成丟解(2)要學會變形使用兩點間距離公式,當已知直線的斜率 時,公式變形為或;當已知直線的傾斜角時,還可以得到或(3)靈活使用定比分點公式,可以簡化運算.(4)會在任何條件下求出直線方程.(5)注重運用數(shù)形結合思想研究平面圖形的性質解析幾何中的一些常用結論: 直線的傾斜角的范圍是,) 直線的傾斜角與斜率的變化關系:當傾斜角是銳角是,斜率k隨著傾斜角的增大而增大
38、。當是鈍角時,k與同增減。 截距不是距離,截距相等時不要忘了過原點的特殊情形。 兩直線:L1 A1x+B1y+C1=0 L2: A2x+B2y+C2=0 L1L2A1A2+B1B2=0 兩直線的到角公式:L1到L2的角為,tan= 夾角為,tan=|注意夾角和到角的區(qū)別 點到直線的距離公式,兩平行直線間距離的求法。 有關對稱的一些結論 點(,)關于軸、軸、原點、直線y=x的對稱點分別是(,),(,),(,),(,) 如何求點(,)關于直線Ax+By+C=0的對稱點 直線Ax+By+C=0關于軸、軸、原點、直線y=x的對稱的直線方程分別是什么,關于點(,)對稱的直線方程有時什么? 如何處理與光的
39、入射與反射問題?曲線f(x,y)=0關于下列點和線對稱的曲線方程為:()點(a.b) ()軸()軸()原點()直線y=x()直線y=x()直線x點和圓的位置關系的判別轉化為點到圓心的距離與半徑的大小關系。點P(x0,y0),圓的方程:(xa)2+(yb)2=r2.如果(x0a)2+(y0b)2>r2點P(x0,y0)在圓外;如果 (x0a)2+(y0b)2<r2點P(x0,y0)在圓內;如果 (x0a)2+(y0b)2=r2點P(x0,y0)在圓上。10圓上一點的切線方程:點P(x0,y0)在圓x2+y2=r2上,那么過點P的切線方程為:x0x+y0y=r2.11過圓外一點作圓的切
40、線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線。12直線與圓的位置關系,通常轉化為圓心距與半徑的關系,或者利用垂徑定理,構造直角三角形解決弦長問題。>r相離d=r相切d<r相交13圓與圓的位置關系,經(jīng)常轉化為兩圓的圓心距與兩圓的半徑之間的關系。設兩圓的圓心距為d,兩圓的半徑分別為r,Rd>r+R兩圓相離dr+R兩圓相外切|Rr|<d<r+R兩圓相交d|Rr|兩圓相內切d<|Rr|兩圓內含d=0,兩圓同心。14兩圓相交弦所在直線方程的求法:圓C1的方程為:x2+y2+D1x+E1y+C1=0.圓C2的方程為:x2+y2+D2x+E2y+C2=
41、0. 把兩式相減得相交弦所在直線方程為:(D1-D2)x+(E1-E2)y+(C1-C2)=015圓上一定到某點或者某條直線的距離的最大、最小值的求法。16焦半徑公式:在橢圓中,F(xiàn)、F分別左右焦點,P(x0,y0)是橢圓是一點,則:(1)|PF1|=a+ex0 |PF2|=a-ex0 (2)三角形PFF的面積如何計算17圓錐曲線中到焦點的距離問題經(jīng)常轉化為到準線的距離。18直線y=kx+b和圓錐曲線f(x,y)=0交于兩點P1(x1,y1) ,P2(x2,y2)則弦長P1P2=19.雙曲線的漸近線的求法(注意焦點的位置)已知雙曲線的漸近線方程如何設雙曲線的方程。20.拋物線中與焦點有關的一些結
42、論:(要記憶)解題思路與方法:(1)在解答有關圓錐曲線問題時,首先要考慮圓錐曲線焦點的位置,對于拋物線還應同時注意開口方向,這是減少或避免錯誤的一個關鍵.(2)在考查直線和圓錐曲線的位置關系或兩圓錐曲線的位置關系時,可以利用方程組消元后得到二次方程,用判別式進行判斷.但對直線與拋物線的對稱軸平行時,直線與雙曲線的漸近線平行時,不能使用判別式,為避免繁瑣運算并準確判斷特殊情況,此時要注意用好分類討論和數(shù)形結合的思想方法.畫出方程所表示的曲線,通過圖形求解. 當直線與圓錐曲線相交時:涉及弦長問題,常用“韋達定理法”設而不求計算弦長(即應用弦長公式);涉及弦長的中點問題,常用“差分法”設而不求,將弦
43、所在直線的斜率、弦的中點坐標聯(lián)系起來,相互轉化.同時還應充分挖掘題目的隱含條件,尋找量與量間的關系靈活轉化,往往就能事半功倍.(3)求圓錐曲線方程通常使用待定系數(shù)法,若能據(jù)條件發(fā)現(xiàn)符合圓錐曲線定義時,則用定義求圓錐曲線方程非常簡捷.在處理與圓錐曲線的焦點、準線有關問題,也可反用圓錐曲線定義簡化運算或證明過程. 一般求已知曲線類型的曲線方程問題,可采用“先定形,后定式,再定量”的步驟.定形指的是二次曲線的焦點位置與對稱軸的位置.定式根據(jù)“形”設方程的形式,注意曲線系方程的應用,如當橢圓的焦點不確定在哪個坐標軸上時,可設方程為mx2+ny2=1(m0,n0).定量由題設中的條件找到“式”中特定系數(shù)
44、的等量關系,通過解方程得到量的大小.(4)在解與焦點三角形(橢圓、雙曲線上任一點與兩焦點構成的三角形稱為焦點三角形)有關的命題時,一般需使用正余弦定理、和分比定理及圓錐曲線定義.(5)要熟練掌握一元二次方程根的判別式和韋達定理在求弦長、中點弦、定比分點弦、弦對定點張直角等方面的應用.(6)求動點軌跡方程是解析幾何的重點內容之一,它是各種知識的綜合運用,具有較大的靈活性,求動點軌跡方程的實質是將“曲線”化成“方程”,將“形”化成“數(shù)”,使我們通過對方程的研究來認識曲線的性質. 求動點軌跡方程的常用方法有:直接法、定義法、幾何法、代入轉移法、參數(shù)法、交軌法等,解題時,注意求軌跡的步驟:建系、設點、
45、列式、化簡、確定點的范圍.(7)參數(shù)方程,請大家熟練掌握公式,后用化歸的思想轉化到普通方程即可求解.九、排列組合與二項式定理1計數(shù)原理加法原理:N=n1+n2+n3+nM (分類) 乘法原理:N=n1·n2·n3·nM (分步)2排列(有序)與組合(無序)Anm=n(n1)(n2)(n3)(nm+1)= Ann =n!Cnm =Cnm= CnnmCnmCnm1= Cn+1m+1 kk!=(k+1)!k!3排列組合混合題的解題原則:先選后排,先分再排排列組合題的主要解題方法:優(yōu)先法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素. 以位置為主考慮,即先滿足特殊位
46、置的要求,再考慮其他位置.捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)插空法(解決相間問題)間接法和去雜法等等在求解排列與組合應用問題時,應注意:(1)把具體問題轉化或歸結為排列或組合問題;(2)通過分析確定運用分類計數(shù)原理還是分步計數(shù)原理;(3)分析題目條件,避免“選取”時重復和遺漏;(4)列出式子計算和作答.經(jīng)常運用的數(shù)學思想是:分類討論思想;轉化思想;對稱思想.4二項式定理:(a+b)n=Cn0ax+Cn1an1b1+ Cn2an2b2+ Cn3an3b3+ Cnranrbr+ Cn n1abn1+ Cnnbn 特別地:(1+x)n=1+Cn1x+Cn2x2+Cnrxr+
47、Cnnxn通項為第r+1項:Tr+1= Cnranrbr 作用:處理與指定項、特定項、常數(shù)項、有理項等有關問題。主要性質和主要結論:對稱性Cnm=Cnnm 最大二項式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項還是中間兩項)所有二項式系數(shù)的和:Cn+Cn1+Cn2+ Cn3+ Cn4+Cnr+Cnn=2n奇數(shù)項二項式系數(shù)的和偶數(shù)項而是系數(shù)的和Cn+Cn+Cn+ Cn+ Cn+Cn+Cn+Cn+ Cn+ Cn+=2n -15注意二項式系數(shù)與項的系數(shù)(字母項的系數(shù),指定項的系數(shù)等,指運算結果的系數(shù))的區(qū)別,在求某幾項的系數(shù)的和時注意賦值法的應用。6二項式定理的應用:解決有關近似計
48、算、整除問題,運用二項展開式定理并且結合放縮法證明與指數(shù)有關的不等式。十、概率統(tǒng)計必然事件 P(A)=1,不可能事件 P(A)=0,隨機事件的定義 0<P(A)<1。2等可能事件的概率:(古典概率)P(A)=理解這里m、的意義?;コ馐录ˋ、B互斥,即事件A、B不可能同時發(fā)生,這時P(AB)=)P(A+B)=P(A)+ P(B)對立事件(A、B對立,即事件A、B不可能同時發(fā)生,但A、B中必然有一個發(fā)生。這時P(AB)=)P(A)+ P(B)獨立事件:(事件A、B的發(fā)生相互獨立,互不影響)P(AB)P(A) P(B)獨立重復事件(貝努里概型)Pn(K)=Cnkpk(1p)k 表示事件A在n次獨立重復試驗中恰好發(fā)生了k次的概率。P為在一次獨立重復試驗中事件A發(fā)生的概率。特殊:令k=0得:在n次獨立重復試驗中,事件A沒有發(fā)生的概率為Pn()=Cn0p0(1p)n =(1p)n 令k=n得:在n次獨立重復試驗中,事件A全部發(fā)生的概率為Pn(n)=Cnnpn(1p)0 =pn3.統(tǒng)計總體、個體、樣本、,樣本個體、樣本容量的定義;抽樣方法:1簡單隨機抽樣:包括隨機數(shù)表法,標簽法;2系統(tǒng)抽樣 3分層抽
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鐵路貨運需求預測模型-洞察分析
- 網(wǎng)絡安全法律法規(guī)研究概述-洞察分析
- 語言教育信息化-洞察分析
- 藥物治療頸外動脈閉塞機制研究-洞察分析
- 血塞通藥物相互作用研究-洞察分析
- 虛擬現(xiàn)實設備操作輔助-洞察分析
- 《等速萬向節(jié)講義》課件
- 2024年05月廣東廣州銀行資產(chǎn)管理部社會招考筆試歷年參考題庫附帶答案詳解
- 農事服務協(xié)議書(2篇)
- 《將廣告加以完善》課件
- 鐵路工程-軌道工程施工工藝及方案
- 福建省福州市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細及行政區(qū)劃代碼
- 《高中語文文言斷句》一等獎優(yōu)秀課件
- 上海市中小學生學籍信息管理系統(tǒng)
- (完整版)自動感應門施工方案
- [QC成果]提高剪力墻施工質量一次合格率
- 8站小車呼叫的plc控制
- _ 基本粒子與宏觀物體內在聯(lián)系
- 象棋比賽積分編排表
- 小學贛美版六年級美術上冊第二十課向往和平課件(16張)ppt課件
- DPP4抑制劑比較篇PPT課件
評論
0/150
提交評論