版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 ECE451 Controll Engineering Inverted pendulum09/29/2013Introduction:Inverted pendulum is a typical fast, multi-varaibles, nonlinear, unstable system, it has significant meaning. We choose the PID controller to fot the inverted pendulum. Assume the input is a step signal , the gravitational accelera
2、tion g=9.8m/s2 and linearize the nonlinear model around the operating point.1.Mathematic ModlingMmass of the car0.5 kgmmass of the pendulum0.2 kgbcoefficient of friction for cart0.1 N/m/secllength to pendulum center of mass0.3 mImass moment of inertia of the pendulum 0.006 kg.m2Fforce applied to the
3、 cartxcoordinate of cart positionpendulum angle from vertical (down)N and F are the force from horizontal and vertical direction.N=md2dt2(x+lsin)Force analysisConsider the horizontal direction cart force, we get the equation:Mx=F-bx-NConsider the horizontal direction pendulum force, we get the equat
4、ion:N=mx+mlcos-ml2sinTo get rid of P and N, we get this equation:-Plsin-Nlcos=IMerge these two equations, about to P And N, to obtain a second motion equation:l+ml2+mglsin=-mlxcosu to represent the controlled object with the input force F, linearized two motion equationsApply Laplace transform to th
5、e equation aboveThe transfer function of angle and positionLet v = xput the equation above into the second equationWe get the transfer functionState space equation:Solve the algebraic equation, obtain solution as follows:Finally we get the system state space equations.2. PID Controller DesignWe now
6、design a PID controller for the inverted pendulum system.KD(s) is the transfer function of the controller.G(s) is the transfer function of the controlled car.Considering that the input r(s) =0, the block diagram can be transformed as:The output of the system is num the numerator of the objectden the
7、 denominator of the objectnumPID the numerator of the PID controller transfer functiondenPID the denominator of the PID controller transfer functionThe object transfer function is ,in which .PID Controller Transfer Function is Now, we add the cars position as another output, we get in which G1 is th
8、e transfer function of the pendulum, G2 is the transfer function of the car.The output of the cars position is in which, num1,den1,num2,den2 are separately mean the controlled object 1 and object 2 and PID controllers numerators and denominators.From , we could get thatIn which, .We can easily simpl
9、ified the equation as3. Matlab SimulationIn design, the cart's position will be ignored. Under these conditions, the design criteria are: 1) settling time is less than 5 seconds 2) pendulum should not move more than 0.05 radians away from the verticalWhen kd=1,k=1,ki=1:numc1=4.5455 0 0 0, denc1=
10、1 4.7273 -26.6364 0.0909 0 0, num2= -1.8182 0 44.5455 0, denc2=1 4.7273 -26.6364 0.0909 0 Then we tried many times to adjust the parameter to satisfy the requirements: Ts <=5 s and overshoot M<0.05.We find the optimal parameters of kd,k,ki which is the second situation.2. When kd=20,k=300,ki=1
11、:Numc1= 4.5455 0 0 0, denc1=0.001 0.09111.3325 0.0001 0 0, numc2= -1.8182 0 44.5455 0, denc2=0.001 0.09111.3325 0.0001 0 0The results: Matlab codesM=0.5;m=0.2;b=0.1;I=0.006;g=9.8;l=0.3;q=(M+m)*(I+m*l2)/q-(m*l)2;num1=m*l/q 0 0;den1=1 b*(I+m*l2)/q-(M+m)*m*g*l/q-b*m*g*l/q 0;num2=-(I+m*l2)/q 0 m*g*l/q;d
12、en2=den1;kd=1;k=1;ki=1;numPID=kd k ki;denPID=1 0;numci=conv (num1 denPID);denc1=polyadd(conv(denPID,den1),conv(numPID,num1);t=0:0.1:20;figure(1)impulse(numc1,denc1,t)title(Angle)figure(2)impulse(numc2,denc2,t)title(Position)M=0.5;m=0.2;b=0.1;I=0.006;g=9.8;l=0.3;q=(M+m)*(I+m*l2)/q-(m*l)2;num1=m*l/q 0
13、 0;den1=1 b*(I+m*l2)/q-(M+m)*m*g*l/q-b*m*g*l/q 0;num2=-(I+m*l2)/q 0 m*g*l/q;den2=den1;kd=20;k=300;ki=1;numPID=kd k ki;denPID=1 0;numci=conv (num1 denPID);denc1=polyadd(conv(denPID,den1),conv(numPID,num1);t=0:0.1:20;figure(1)impulse(numc1,denc1,t)title(Angle)figure(2)impulse(numc2,denc2,t)title(Position)Simulation:We will build a closed-loop model with reference input of pendulum position and a disturbance force applied to the cart.We now begin to simulate the closed-lo
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 租客有老人小孩租房合同(2篇)
- 巜趙州橋 課件
- 西南林業(yè)大學(xué)《茶藝》2023-2024學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《設(shè)計(jì)表現(xiàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 探究水溫對(duì)金魚呼吸的影響
- 新人教版五年級(jí)上冊(cè)用字母表示數(shù)例3教程
- 西京學(xué)院《工程力學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《安裝工程計(jì)量與計(jì)價(jià)》2021-2022學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《數(shù)字電子技術(shù)基礎(chǔ)》2022-2023學(xué)年期末試卷
- 描寫眼睛 課件
- 中醫(yī)知識(shí):產(chǎn)后頭痛
- 住院醫(yī)師規(guī)范化培訓(xùn)臨床小講課指南(2021年版)
- 執(zhí)行實(shí)務(wù)一百問
- 成人癌性疼痛護(hù)理-中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)2019
- 吊籃作業(yè)安全措施
- 《思想道德與法治》2021版第四章
- 找出劃線部分讀音不同的單詞
- 產(chǎn)品銷售培訓(xùn)心得
- 精神分裂癥的規(guī)范化治療講課課件
- 二年級(jí)下冊(cè)道德與法治教案-3.2節(jié)約糧食北師大版
- 急診剖宮產(chǎn)分級(jí)
評(píng)論
0/150
提交評(píng)論