版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、.高一數(shù)學下冊教學檢測試題查字典大學網(wǎng)高中頻道為大家編輯了高一數(shù)學下冊教學檢測試題相關內(nèi)容,供大家參考閱讀,和小編一起加油努力吧。一、選擇題5×12=60分1.集合 , ,那么 ? A.? B.? C.? D.2.以下說法正確的選項是? A.小于 的角是銳角? B.鈍角是第二象限的角C.第二象限的角大于第一象限的角? D.假設角 與角 的終邊一樣,那么3.假設直線 與直線 互相垂直,那么 為? A.? B.1? C.-2? D.4.從2019件產(chǎn)品中選取50件,假設采用下面的方法選?。合扔煤唵坞S機抽樣從2019件產(chǎn)品中剔除3件,剩下的2019件再按系統(tǒng)抽樣的方法抽取,那么每件產(chǎn)品被選
2、中的概率? A.不都相等? B.都不相等? C.都相等,且為? D.都相等,且為5. 是第二象限角,那么 是? ? A.第一象限角? B.第二象限角? C.第二或第四象限角? D.第一或第三象限角6.一名小學生的年齡和身高單位:cm的數(shù)據(jù)如下表:由散點圖可知,身高 與年齡 之間的線性回歸方程為 ,那么 的值為? A.65? B.74? C.56? D.477.向頂角為? 的等腰三角形 其中 內(nèi)任意投一點 ,那么 小于? 的概率為? A.? B.? C.? D.8. 函數(shù) 滿足:對任意的 ,均有 ,那么? A.? B.C.? D.9.函數(shù) 的圖象的大致形狀是? ? 10.如圖,等邊三角形 的中線
3、 與中位線 相交于 , 是 繞 旋轉(zhuǎn)過程中的一個圖形,以下命題中,錯誤的選項是? A.動點 在平面 上的射影在線段 上B.恒有 平面 平面BCEDC.三棱錐 的體積有最大值D.異面直線 與 不可能垂直11.函數(shù) 是定義在 上的增函數(shù),函數(shù) 的圖象關于點 對稱. 假設對任意的 ,不等式 恒成立,那么當 時, 的取值范圍是? A. ? ?B.? ? C. ?D.12.函數(shù) ,假設方程 有四個不同的解 , , , ,且 ,那么 的取值范圍是? A.? B.? C.? D.二、填空題5×4=20分13.數(shù)據(jù)? 平均數(shù)為6,方差為2,那么數(shù)據(jù) 的平均數(shù)為? ,方差為? ;14.某校共有老師20
4、0人,男學生800人,女學生600人,現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為 的樣本,從男學生中抽取的人數(shù)為100人,那么? .15. 執(zhí)行如圖的程序框圖,假如輸入的N的值是6,那么輸出的p的值是? .16.假設圓 上至少有三個不同點到直線 的間隔 為 那么直線 的斜率的取值區(qū)間為? .三、解答題17.10分對某校高二年級學生參加社區(qū)效勞次數(shù)進展統(tǒng)計,隨機抽取 名學生作為樣本,得到這 名學生參加社區(qū)效勞的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:1假設M=40,求出表中m、n、p中及圖中 的值;2假設該校高二學生有 人,試估計該校高二學生參加社區(qū)效勞的次數(shù)在區(qū)間 內(nèi)的
5、人數(shù);18.12分扇形AOB的周長為8.1假設這個扇形的面積為3,求其圓心角的大小;2求該扇形的面積獲得最大時,圓心角的大小.19.12分設關于 的方程 .1假設 是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.2假設 是從區(qū)間0,3任取的一個數(shù),b是從區(qū)間0,2任取的一個數(shù),求上述方程有實根的概率.20. 12分以下圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.1假設F為PD的中點,求證:AF面PCD;2證明:BD面PEC;3求該幾何體的體積.21.12分 , 為圓 : 與 軸的交點A在B上,過點 的直線 交圓 于 兩點點M在上、點N在下
6、.1假設弦 的長等于 ,求直線 的方程;2假設 都不與 , 重合,直線 與 的交點為C.證明:點C在直線y=1.22. 12分定義在區(qū)間 上的函數(shù) ,其中常數(shù)? .1假設函數(shù) 分別在區(qū)間 上單調(diào),試求 的取值范圍;2當 時,是否存在實數(shù) ,使得函數(shù) 在區(qū)間 上單調(diào)、且 的取值 范圍為 ,假設存在,求出 的取值范圍;假設不存在,請說明理由.高一第一次月考試卷一、選擇題CBCCD? ABCDD? CB二、填空題13.? 6? ,? 8? ;? 14.200;? 15.105;? 16.三、解答題17.對某校高二年級學生參加社區(qū)效勞 次數(shù)進展統(tǒng)計,隨機抽取 名學生作為樣本,得到這 名學生參加社區(qū)效勞
7、的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直 方圖如下:1假設M=40,求出表中m、n、p中及圖中 的值;2假設該校高二學生有 人,試估計該校高二學生參加社區(qū)效勞的次數(shù)在區(qū)間 內(nèi)的人數(shù);解:1因為頻數(shù)之和為 ,所以 .因為 是對應分組 的頻率與組距的商,所以 .因為該校高二學生有 人,分組 內(nèi)的頻率是 ,所以估計該校高二學生參加社區(qū)效勞的次數(shù)在此區(qū)間內(nèi)的人數(shù)為 人.18.扇形AOB的周長為8.1假設這個扇形的面積為3,求其圓心角的大小;2求該扇形的面積獲得最大時,圓心角的大小.1解:設扇形半徑為 ,扇形弧長為 ,周長為 ,所以 ,解得? 或 ,圓心角 ,或是 .2根據(jù) , ,得到 ,
8、當 時, ,此時 ,那么圓心角 ,19.設關于 的方程 .1假設 是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.2假設 是從區(qū)間0,3任取的一個數(shù),b是從區(qū)間0,2任取的一個數(shù),求上述方程有實根的概率.解:設事件A為“方程有實根.當a>0,b>0時,方程有實根的充要條件為ab1由題意知此題是一個古典概型,試驗發(fā)生包含的根本領件共12個:0,00,10,21,01,11,22,02,12,23,03,13,2其中第一個數(shù)表示a的取值,第二個數(shù)表示b的取值.事件A中包含9個根本領件,事件A發(fā)生的概率為P= =2由題意知此題是一個幾
9、何概型,試驗的全部完畢所構成的區(qū)域為a,b|0a3,0b2滿足條件的構成事件A的區(qū)域為a,b|0a3,0b2,ab所求的概率是20.以下圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.1假設F為PD的中點,求證:AF面PCD;2證明:BD面PEC;3求該幾何體的體積.解:1由幾何體的三視圖可知,底面 是邊長為4的正方形,而且 , , .取 的中點 ,如下圖.又 , 面 , .又? , 面 .2如圖,取 的 中點 , 與 的交點為 ,連結(jié) 、 ,如下圖.四邊形 為平行四邊形, ,又? 面 , 面 , 面 .3 .21. , 為圓 : 與 軸的交點A在B上,過點 的直線 交圓 于 兩點.1假設弦 的
10、長等于 ,求直線 的方程;2假設 都不與 , 重合,直線 與 的交點為C.證明:點C在直線y=1.解:當 不存在時, 不符合題意當 存 在時,設直線 :圓心 到直線 的間隔 ,解得綜上所述,滿足題意的直線 方程為設直線MN的方程為: ,聯(lián)立 得:直線 : ,直線 :消去 得:要證:C落在定直線 上,只需證:即證:即證:即證:即證:顯然成立.所以直線 與 的交點在一條定直線上.22.定義在區(qū)間 上的函數(shù) ,其中常數(shù) .1假設函數(shù) 分別在區(qū)間 上單調(diào),試求 的取值范圍;2當 時,是否存在實數(shù) ,使得函數(shù) 在區(qū)間 單調(diào),且 的取值范圍為 ,假設存在,求出 的取值范圍;假設不存在,請說明理由.試題解析
11、:1設? 函數(shù) 分別在區(qū)間 上單調(diào)? 且要使函數(shù) 分別在區(qū)間 上單 調(diào)那么 只需2當 時, 如圖,可知 , 在 、 、 、 均為單調(diào)函數(shù)當 時, 在 上單調(diào)遞減那么? 兩式相除整理得? 上式不成立 即 無解, 無取值? 10分當 時, 在 上單調(diào)遞增那么? 即 在 有兩個不等實根而令? 那么作 在 的圖像可知,? 12分當 時, 在 上單調(diào)遞減那么? 兩式相除整理得由 得那么 關于 的函數(shù)是單調(diào)的,而 應有兩個不同的解此種情況無解當 時,同可以解得 無取值單靠“死記還不行,還得“活用,姑且稱之為“先死后活吧。讓學生把一周看到或聽到的新穎事記下來,摒棄那些假話套話空話,寫出自己的真情實感,篇幅可
12、長可短,并要求運用積累的成語、名言警句等,定期檢查點評,選擇優(yōu)秀篇目在班里朗讀或展出。這樣,即穩(wěn)固了所學的材料,又鍛煉了學生的寫作才能,同時還培養(yǎng)了學生的觀察才能、思維才能等等,到達“一石多鳥的效果。觀察內(nèi)容的選擇,我本著先靜后動,由近及遠的原那么,有目的、有方案的先安排與幼兒生活接近的,能理解的觀察內(nèi)容。隨機觀察也是不可少的,是相當有趣的,如蜻蜓、蚯蚓、毛毛蟲等,孩子一邊觀察,一邊提問,興趣很濃。我提供的觀察對象,注意形象逼真,色彩鮮明,大小適中,引導幼兒多角度多層面地進展觀察,保證每個幼兒看得到,看得清??吹们宀拍苷f得正確。在觀察過程中指導。我注意幫助幼兒學習正確的觀察方法,即按順序觀察和
13、抓住事物的不同特征重點觀察,觀察與說話相結(jié)合,在觀察中積累詞匯,理解詞匯,如一次我抓住時機,引導幼兒觀察雷雨,雷雨前天空急劇變化,烏云密布,我問幼兒烏云是什么樣子的,有的孩子說:烏云像大海的波浪。有的孩子說“烏云跑得飛快。我加以肯定說“這是烏云滾滾。當幼兒看到閃電時,我告訴他“這叫電光閃閃。接著幼兒聽到雷聲驚叫起來,我抓住時機說:“這就是雷聲隆隆。一會兒下起了大雨,我問:“雨下得怎樣?幼兒說大極了,我就舀一盆水往下一倒,作比較觀察,讓幼兒掌握“傾盆大雨這個詞。雨后,我又帶幼兒觀察晴朗的天空,朗讀自編的一首兒歌:“藍天高,白云飄,鳥兒飛,樹兒搖,太陽公公咪咪笑。這樣抓住特征見景生情,幼兒不僅印象深化,對雷雨前后氣象變化的詞語學得快,記得牢,而且會應用。我還在觀察的根底上,引導幼兒聯(lián)想,讓他們與以往學的詞語、生活經(jīng)歷聯(lián)絡起來,在開展想象力中開展語言。如啄木鳥的嘴是長長的,尖尖的,硬硬的,像醫(yī)生用的手術刀樣,給大樹開刀治病。通過聯(lián)想,幼兒可以生動形象地描繪觀察對象。綜上, 的取值范圍為小編為大家整理的高一數(shù)學下冊教學檢測試題大家仔細閱讀了么,最后祝大家學習進步。唐宋或更早之前,針對“經(jīng)學“律學“算學和“書學各科目,其相應傳授者稱為“博士,這與當今“博士含義已經(jīng)相去甚遠。而對那些特別講授“武事或講解“經(jīng)籍者,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消毒劑與微生物相互作用-洞察分析
- 水產(chǎn)養(yǎng)殖中魚病的預防與控制技術研究-洞察分析
- 冬季防火人人有責精彩講話稿(5篇)
- 辦公室文化與高效報告文化構建
- 豬肉加工廠設備采購招標合同三篇
- 辦公用品在小紅書的社交化銷售策略研究
- 個性化字體在多媒體中的運用
- 辦公環(huán)境中嵌入式系統(tǒng)的節(jié)能設計挑戰(zhàn)與解決方案
- 專業(yè)師資的跨界交流與合作機會探討
- 辦公室服務升級與客戶體驗的關聯(lián)分析
- 安裝通風管道安全協(xié)議書
- 安全防護措施管理制度模版(3篇)
- 河南省漯河市(2024年-2025年小學五年級語文)統(tǒng)編版階段練習((上下)學期)試卷及答案
- 形容詞副詞(專項訓練)-2023年中考英語二輪復習
- 華南理工大學《自然語言處理》2021-2022學年期末試卷
- 廣東開放大學2024秋《形勢與政策(專)》形成性考核參考答案
- 2023年中國鐵路南昌局集團有限公司招聘筆試真題
- 2024年江蘇省泰州市保安員理論考試題庫及答案(完整)
- 部編版小學五年級語文上冊第15課《小島》精美課件(共53張課件)
- 線上客服外包合作協(xié)議書范文
- 2023-2024-深圳某中學初二年級上冊數(shù)學期末測試卷
評論
0/150
提交評論