版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、中考數(shù)學解題技巧1、配方法所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。2、因式分解法因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘
2、法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。3、換元法換元法是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。4、待定系數(shù)法在解數(shù)學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設條件列出關于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一5、判別式法與韋達定理一元二次方程ax2+bx+c=0(a、b、c屬
3、于R,a0)根的判別,=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應用。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。6、構造法在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱
4、為構造法。運用構造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。7、反證法反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經(jīng)過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小
5、)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。8、面積法平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。用歸納法或分析法證明平面幾何題,其困
6、難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數(shù)量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。9、幾何變換法在數(shù)學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數(shù)學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本
7、質的認識。幾何變換包括:(1)平移;(2)旋轉;(3)對稱。10.客觀性題的解題方法選擇題是給出條件和結論,要求根據(jù)一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。(1)直接推演法
8、:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。(4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學知識或推理、演算,把不正確的結論排除,余下的結論再經(jīng)篩選,從而作出正確的結論的解法叫排除、篩選法。(5)圖解法:借助于符合
9、題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法.1、合并同類項合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。2、恒等變兩個數(shù)字來相減,互換位置最常見,正負只看其指數(shù),奇數(shù)變號偶不變。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n3、平方差公式平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。4、完全平方完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾
10、項符號隨中央。5、因式分解一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(shù)(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。6、“代入”口決挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分數(shù)或負數(shù),給它帶上小括弧,原括弧內出(現(xiàn))括弧,逐級向下變括?。ㄐ≈写螅?、單項式運算加、減、乘、除、乘(開)方,三級運算分得清,系數(shù)進行同級(運)算,指數(shù)運算降級(進)行。8、一元一次不等式解題的一般步驟去分母、去括號,移項時候要變號,同類項、合并好,再把系數(shù)來除掉,兩邊
11、除(以)負數(shù)時,不等號改向別忘了。9、一元一次不等式組的解集大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。10、一元二次不等式、一元一次絕對值不等式的解集大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。11、分式混合運算法則分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡。12、分式方程的解法步驟同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。13、最簡根式的條件最簡根式三條件,號內不把分母含,冪指
12、(數(shù))根指(數(shù))要互質,冪指比根指小一點。14、特殊點坐標特征坐標平面點(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個象限分前后;X軸上y為0,x為0在Y軸。15、象限角的平分線象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱確相反。16、平行某軸的直線平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行于Y軸,點的橫坐標仍照舊。17、對稱點坐標對稱點坐標要記牢,相反數(shù)位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號。18、自變量的取值范圍分式分母不為零,偶次根下負不行;零次冪底數(shù)不為零,整式、
13、奇次根全能行。19、函數(shù)圖像的移動規(guī)律若把一次函數(shù)解析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”20、一次函數(shù)圖像與性質口訣一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠。中考倒計時40天,初三孩子們緊張復習的同時也要清楚今年各科重點考察哪部分,孩子有針對性的復習才能在中考中取得勝利!數(shù)學經(jīng)過緊張而又艱苦
14、的幾個月的復習準備后,同學們將要走進考場,實現(xiàn)自己的愿望。但是能否將自己的實際水平如實地在考卷上全面正確地反映出來,除了要有扎實的知識功底外,學生還應掌握應考的一些復習策略??记霸鯓訌土暿紫?,要抓住基礎概念,將其作為技巧突破口。數(shù)學試題中的所謂解題技巧其實并不是什么高深莫測的東西,它來源于最基礎的知識和概念,是掌握到一定程度時的靈光一現(xiàn)。要尋找差異因為做了大量雷同的練習,所以容易造成對相近試題的判斷失誤,這是非常危險的。其次,要抓住常用公式,理解其來龍去脈。這對記憶常用數(shù)學公式是很有幫助的。此外,還要進一步了解其推導過程,并對推導過程中產(chǎn)生的一些可能變化進行探究,這樣做勝過做大量習題,并可以使
15、自己更好地掌握公式的運用,往往會有意想不到的效果。再次,要抓住中考動向,勤練解題規(guī)范。很多學生認為,只要解出題目的答案就能拿到滿分了。其實,由于新課程改革的不斷深入,中考越來越注重解題過程的 規(guī)范和解答過程的完整,只要是有過程的解答題,過程比最后的答案要重要得多。所以,要規(guī)范書寫過程,避免“會而不對”、“對而不全”的情形。最后,要抓住數(shù)學思想,總結解題方法。中考中常出現(xiàn)的數(shù)學思想方法有分類討論法、面積法、特值法、數(shù)形結合法等,運用變換思想、方程思想、函數(shù)思想、 化歸思想等來解決一些綜合問題,在腦海中將每一種方法記憶一道對應的典型試題,并有目的地將較綜合的題目分解為較簡單的幾個小題目,做到舉一反
16、三,化繁為 簡,分步突破;而在與同學的合作學習中,要將較為簡單的題組合成較有價值的綜合題。中考題最大的特點是淺、寬、新、活,因而,在復習中要回避繁、難、偏、 怪的題,否則,一方面浪費時間,另一方面也會增加心理負擔。處理好幾個關系1、審題與解題的關系先審好題,再做題。有些問題要從題目中挖掘隱含條件,啟發(fā)解題思路,如果題審不好,條件挖掘得不深,就可能會審錯題。只有耐心仔細地審題,準確地把握題目中的關鍵詞與量,從中獲取盡可能多的信息,才能迅速找準解題方向。2、“會做”與“得分”的關系要求會做的題要拿滿分,不會做的題要爭取拿分。如何得分,主要靠準確完整的數(shù)學語言表述,必要的步驟不能省去,會多少寫多少。
17、只有重視解題過程的嚴密推理和精確計算,才能保證拿到分。3、“快”與“準”的關系在目前題量大、時間緊的情況下,“準”尤為重要。“快”則是平時訓練的結果。因此,平時做題,既要做到“準”又要做到“快”,而不是只要做對即可。4、難題與易題的關系一般來說,無論什么樣的考試,在拿到試卷后,應將全卷通讀一遍,按先易后難、先簡后繁的順序作答。但由于中考通常是按照由易到難 的順序排列,一般是分為三個由易到難排列,選擇題、填空題、解答題,所以,要盡量按照試題的先后順序來解答。遇到不會的問題可以先跳過,不能在一道問題上 花費太多時間,否則容易導致后面的題還沒有看時間就結束了。平時做題時要控制好時間,以免中考時出現(xiàn)時
18、間不夠用的現(xiàn)象。注重良好習慣培養(yǎng)另外,隨著中考時間的臨近,還應注重良好習慣的培養(yǎng)與提升:1、速度??荚囀窍驎r間要質量,復習時一定要有速度意識,不能只要質量而不要數(shù)量和速度,超時間的投入就是一種“潛在丟分”,如在考場上發(fā)現(xiàn)時間不夠,就會亂了陣腳,導致后面的題無法思維,無法下手解答,全部丟分。2、計算。中考歷來重視運算能力,雖然近年來試題的計算量略有降低,但并未削弱對計算能力的要求,運算要熟練、準確、簡捷、迅速,要與推理相結合,要合理且簡單。3、表達。在以中低檔題型為主體的考試中,獲得正確的思路相對容易,但要如何準確而規(guī)范地表達就顯得更為重要了。在最后的綜合復習中要注意書寫要求, 特別是做完歷年的中考題后不能萬事大吉
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鄭州軌道工程職業(yè)學院《軟裝面料再造》2023-2024學年第一學期期末試卷
- 肇慶醫(yī)學高等??茖W校《建筑工程計量與計價》2023-2024學年第一學期期末試卷
- 運城幼兒師范高等專科學?!秳赢嫾挤ā?023-2024學年第一學期期末試卷
- 區(qū)塊鏈確保食品追溯透明
- DB2201T 67-2024 架子牛引進質量控制規(guī)范
- 數(shù)學啟蒙游戲課
- 房地產(chǎn)經(jīng)紀綜合能力-《房地產(chǎn)經(jīng)紀綜合能力》點睛提分卷2
- 七夕節(jié)的傳統(tǒng)與現(xiàn)代模板
- 農學研究答辯模板
- 二零二五年房地產(chǎn)廣告策劃合同1200字模板2篇
- 課題申報書:大中小學鑄牢中華民族共同體意識教育一體化研究
- 巖土工程勘察課件0巖土工程勘察
- 《腎上腺腫瘤》課件
- 2024-2030年中國典當行業(yè)發(fā)展前景預測及融資策略分析報告
- 《乘用車越野性能主觀評價方法》
- 幼師個人成長發(fā)展規(guī)劃
- 2024-2025學年北師大版高二上學期期末英語試題及解答參考
- 批發(fā)面包采購合同范本
- 乘風化麟 蛇我其誰 2025XX集團年終總結暨頒獎盛典
- 2024年大數(shù)據(jù)分析公司與中國政府合作協(xié)議
- 一年級數(shù)學(上)計算題專項練習匯編
評論
0/150
提交評論