




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、高等傳熱學(xué) 課程作業(yè)Homework 5.21. Slug flow in a tube(u(r) = V) with a fully developed temperature profile:- Constant heat flux- What is T(r)?·Remember dTm/dx = constant·Use dT/dr = 0 at r = 0 and Tw at r = R to get ingration constants- What is Nu?A: 根據(jù)能量方程, (1)對于充分發(fā)展的管內(nèi)彈狀流,u=0, 且由于 = constant,因此(1
2、)式可化簡為: (2)解之可得, (3)根據(jù)邊界條件,代入(3)中,得到C1=0, 平均溫度因此,得到2. Fully developed Poiseuille flow between parallel plates- Constant heat flux- Top and bottom at the same temperature- Neglect viscous dissipation- What is T(y)?·Remember dTm/dx = constant·Use Tw at y = 0 and y = h to get integration cons
3、tants- What is Nu?A: 根據(jù)能量方程, (1)對于x方向充分發(fā)展的Poiseuille流,v=w=0由于 = constant,(1)式可化為: (2)根據(jù),且,代入得到解得溫度分布為 (3)根據(jù)Poiseuille流邊界條件:帶入(3)式中解得,, 因此,得到溫度分布為根據(jù) Nu Homework 5.31. Find the equation for the boundary layer thickness and for Cf for:Compare to the exact values and the fourth order equation solutions.
4、A: 對于,根據(jù)邊界條件, a = 0, 1 = b + c + d對于平板,有, c = 0根據(jù), b + 3d = 0由此可得,a = 0, b = 1.5, c = 0, d = -0.5.對于U = constant,積分后得到,與精確解相差7.2%,與4級(jí)近似解相差20.5%,且與精確解相差2.6%,與4級(jí)近似解相差5.5%2. Derive the ordinary differential equation and the boundary conditions for the Blasius solution energy equation for flow over a fl
5、at plate. (See pages 29-30)A: 根據(jù)能量方程,常壁溫邊界條件:根據(jù)Blasius solution 代入能量方程中得到,即 邊界條件為3. Start from the local friction coefficient for flow over a flat plate, Cf, on slide 31 and derive the average friction coefficient over the entire plate, CL. Show your work.A: 4. A projectile in the form of a bluff-en
6、ded cylinder 20 cm in diameter and 60 cm long, moves through the air in the direction of its long axis at a velocity U of 100 m/s. The drag coefficient, C, is equal to 1.0 for this object. Frontal area=pD2/4, FD= total dragAssuming that the boundary layer thickness over the cylindrical surface of th
7、e projectile at a distance x from the leading edge is given by:and that the momentum thickness of the boundary layer is given by: Find what proportion of the total drag on the projectile is attributable to skin friction over the curved surface, assuming no pressure gradient in the boundary layer in
8、the streamline direction. Data. Air kinematic viscosity is 0.15 cm2/sAir density is 1.15 Kg/m3Assumptions: Assume this is like a flat plate, then use the equation on slide 15. A: 若將圓柱表面看成平板,U = constant, ,則因?yàn)?2.16N180.64N6.7%Homework 5.41. Derive the equation relating q” to the temperature differenc
9、e for natural convection driven flow in a round tube (like on slide 19 for parallel plates).- water properties at 25 C- tube length = 100 cm- tube diameter = 1 mm- constant heat flux- fully developed flow in a tube (from the first homework)a) Plot DT and Q (m3/s) versus heat flux for fluxes of 500 t
10、o 5000 W/m2 b) Is the assumption of fully developed flow valid?- hint: is L/(D Re) > 0.05c) Is the Boussinesq approximation valid here?A: 圓管內(nèi)充分發(fā)展的流體,其速度分布為平均速度體積流量為根據(jù)能量平衡,即 將代入,得到,a) 根據(jù)以上推導(dǎo)過程可以得到,分別作出當(dāng)時(shí)與Q隨q變化的曲線,如下圖所示。b) 125.4 > 0.05 滿足充分發(fā)展的假設(shè)c) 熱膨脹系數(shù)0.085 < 1滿足Boussinesq假設(shè)2. a) Derive the similarity solution equation for
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度知識(shí)產(chǎn)權(quán)戰(zhàn)略規(guī)劃與保密協(xié)議
- 幼兒園玩具采購與教師培訓(xùn)課程包合同
- 2025年度綠色建筑材料代理商合作協(xié)議
- 2025年度聯(lián)合辦學(xué)協(xié)議書-國際教育交流與合作發(fā)展協(xié)議
- 2025年度綠茶茶園承包與茶葉電商合作合同
- 2025年度豬肉行業(yè)人才培養(yǎng)與引進(jìn)合作協(xié)議
- 二零二五年度法治百科普法詞條合同保全及金融科技創(chuàng)新合同
- 二零二五年度住房公積金購房合同原件遺失與房屋交易風(fēng)險(xiǎn)規(guī)避及補(bǔ)償合同
- 二零二五年度房屋租賃合同糾紛調(diào)解協(xié)議模板
- 06 寫作 學(xué)習(xí)描寫景物2024-2025學(xué)年八年級(jí)語文上冊同步教學(xué)設(shè)計(jì)(河北專版)
- 2024版研學(xué)項(xiàng)目合作協(xié)議合同范本
- 《運(yùn)籌學(xué)》全套課件(完整版)
- 《檢驗(yàn)檢測機(jī)構(gòu)資質(zhì)認(rèn)定評審準(zhǔn)則》試題及答案
- 2023-2024學(xué)年安徽省馬鞍山市物理八下期末考試試題及答案解析
- 2024年江蘇農(nóng)牧科技職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫新版
- 2023-2024學(xué)年四川省眉山市東坡區(qū)七年級(jí)(上)期末數(shù)學(xué)試卷
- 有理數(shù)總復(fù)習(xí)市公開課一等獎(jiǎng)省賽課微課金獎(jiǎng)?wù)n件
- 幼兒園安全園本培訓(xùn)
- 第22課《陳涉世家》課件(共71張)
- 化工裝置管道設(shè)置緊急切斷閥的依據(jù)規(guī)范(一)
- (高清版)DZT 0284-2015 地質(zhì)災(zāi)害排查規(guī)范
評論
0/150
提交評論