




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、and its application inEngineeringAssoc. Prof. Kirin Shi施圣賢上海交通大學機械與動力課程的作業(yè)上傳至如下ftp中的upload文件夾ftp地址:(在ftp:/管理器的地址欄中輸入,不是瀏覽器)用戶名: 0120209060: public課程助教:華晨Review on Lecture 3 Symbolic match Differentiation Integration Representation of polynomials Solving polynomial equationSymbolic mathDeclaring symb
2、olic variablessyms symbolic variables options syms x a real>> f = (x-1)*(x-a)*(2*x2+5)+ 20syms without a list of variables, you would get the list of all the symbolic variables in your workspace>> syms'a''f''x'Symbolic mathPerform symbolic calculaton>> f_exp
3、and = expand(f)f_expand =2*x4+5*x2-2*x3*a-5*x*a-2*x3-5*x+2*x2*a+5*a+20>> a=2;>> f_new = eval(f)>> f_expand_new = eval(f_expand) f_expand_new =2*x4+9*x2-6*x3-15*x+30>> expand(sin(2*x)Symbolic mathPerform symbolic calculationuse the function simple to find the simplest (shortes
4、t)form of a symbolic expression>> R = simple(sin(x)2 + cos(x)2) R =1>> R = simple(x*(x+1)*(x+2)>> R = simple(x3+3*x2+3*x+1)>> R = simple(2*sin(x)*cos(x)+2)Differentiationfunctiondiff(y,x,n)calculate the 1st and 2ndderivative of a functiony(x) = sin(a*x) + 4x5 with respect to
5、the variable x>> syms a x>> y_first_derivative = diff(y,x)>> y_second_derivative = diff(y,x,2)>> y_second_derivative_a = diff(y,a,2)Integrationfunctionint(f,x)int(f,x,a,b)bA = ò f ( x)dxaA = ò f ( x)dx¥>> syms a x-2|x|A =òedx-¥>> f = cos(a
6、*x)*a+20*x4>> syms a b x>> f = x2 + 3*x +1;A = int(exp(-2*abs(x),-inf,inf)>> B = int(f,x,a,b)Integrationtrapz, quad and dblquadz = trapz (x,y) computes the integral of y with respect to x using the trapezoidal rule3 sin 2 (x)A = òdxx1X = linspace (1,3,11); Y = (sin(x).2)./x;A
7、= trapz (x, y)A = 0.7938Effect of more intervalsx=linspace(1,3,21);y=(sin(x).2)./x;x=linspace(1,3,41);y=(sin(x).2)./x;A = trapz(x,y)A = 0.7946A = trapz(x,y)A = 0.7948>> syms x>> Y = (sin(x).2)./x;>> int(Y,x,1,3)>> cosint(2)/2 - cosint(6)/2 + log(3)/2ans =0.7948Function quadNu
8、merically evaluating the integral of a function using adaptive Simpson quadrature, to within an error of 1.e-6.Q = quad (FUN, lower_limit, upper_limit)A = quad ('sin(x).2./x', 1, 3)A = 0.7948B = quad ('exp(-x.2)', 0, 1)B = 0.7468sin2 (x)3A = òdx;x11B = òe-x2 dx0Function dbl
9、quadnumerically evaluate a double integral using adaptive Simpson quadrature.15A = ò ò x2 y3 dx dy-1 -1Q = dblquad(FUN, x1, x2, y1, y2)A = dblquad ('x.2.*y.3', -1, 1, -1, 5) A =104.0000quadgk: adaptive Gauss-Kronrod quadraturequad2d: Numerically evaluate integral, adaptive Lobatto
10、quadraturePOLYNOMIALSMany physical and engineering problems lead to polynomialfunctions.A polynomial function of degree n has teral formy = an xn + an-1 xn-1 + . + a1 x + a0A solution or root of the equation is a number xi, real or complex, such thatan xn + an-1 xn-1 + . + a1 xi + a0 = 0iiRepresenta
11、tion of polynomialsRepresented by the vector of its coefficients, in descending powers of x.The length of the coefficient vector is always equal to theorder of the polynomial plus one.For example,x2 +x +x x-xFor example,>> coef_poly_1 = 1coef_poly_1 =21+ 2x + 1x2121>> coef_poly_2 = 2coef
12、_poly_2 =0-15-12- 15x -122x320-15-12>> coef_poly_3 = 2coef_poly_3 =0-150- 15x2x320-150Solving polynomial equationsUse the function roots for finding the roots of a polynomial equation.The argument of this function is the vector of the polynomial coefficients.+ 2x +1x2>> coef_poly_1 = 121
13、>> roots_eq_1 = roots(coef_poly_1)roots_eq_1 =-1-1Function fzeroIn general, we would use the function fzero forsolving equations.The commandfzero ('fun', X0) tries to find azero (a root) of the function fun near X0.equation = '2*x.4-55*x.3 + 506.02*x.2 - 1755.89*x + 1670.79'R1
14、= fzero (equation, -1)R1 = 1.5000>> R1 = fzero (equation, 3)R1 =1.5000>> R1 = fzero (equation, 4)R1 =5.5000>> R1 = fzero (equation, 7)R1 =5.5000>> R1 = fzero (equation, 8)R1 =8.3000>> R1 = fzero (equation, 12)R1 =12.2000>> R1 = fzero (equation, 16)R1 =12.2000y = 2
15、x4 - 55x3 + 506.02x2 - 1755.89x + 1670.7925002000150010005000-50002468101214xyMultiplication and division of polynomials- 2) = ?(2>> coef_poly_1 = 2 3 1;>> coef_poly_2 = 5 -2;>> coef_product = conv(coef_poly_1,coef_poly_2);>> coef_product = coef_product(:) coef_product =10.00
16、11.00-1.00-2.00- 210Multiplication and division of polynomials+ 2 =+ 5x - 28?x2>> coef_poly_num = 8 12 -3 2;>> coef_poly_den = 1 5 -2;>>coef_quotient,coef_remainder=deconv(coef_poly_num,coef_poly_den)The first one is the coefficients of the quotient polynomialThe second one is the
17、coefficients of the remainder polynomialcoef_quotient = 8.00coef_remainder =0-28.000153.00-54.008x3 + 12+ 5- 54)2Non-polynomial functionsin( x) = ex -5sin( x) - ex +5 = 0root1 = fzero ('sin(x)-exp(x)+5', 16)root1 = 1.7878function f1200-20-40-60-80-100-120-140-160-5-4-3-2-10x12345yNon-polynom
18、ial function: Define equation by m-filesin( x) = ex -5sin( x) - ex +5 = 0%function M-file to define f1 function y = f1(x)y = sin(x) - exp(x) + 5;>> root1 = fzero('f1',16)root1 = 1.7878function f1200-20-40-60-80-100-120-140-160-5-4-3-2-10x12345yDefining a polynomial with known rootsThe
19、function poly is the inverse of the function roots.For example, determine the coefficients of a polynomial whose roots are equal to1+i1+i 2+3i4>> equation_roots>> equation_coefs>> equation_coefs equation_coefs = 1.00002.0000 - 5.0000i-16.0000 - 16.0000i-28.0000 + 22.0000i16.0000 +
20、24.0000i=-1+i,1+i,2+3i,-4;poly(equation_roots);equation_coefs(:)x4 + (2 - 5i) x3 - (16 +16i) x2 + (-28 + 22i) x + (16 + 24i)Finding the values of a polynomialOrdinary procedureFor example, the values of the functiony = x5 - 2+ 42for x = -2:0.1:2>> x = -2:0.1:2;>> y = x.5 -2*x.4 + 2*x.3 +
21、3*x.2 + 4;function polyvaly = x5 - 2+ 42>> coef_poly_3 = 1-22304;>> x = -2:0.1:2;>> y = polyval(coef_poly_3,x);Fitting a polynomial to dataxyxy-2.00-8.430.604.48-1.80-6.380.801.50-1.60-1.891.001.11-1.400.421.201.51-1.200.651.400.08-1.004.191.60-0.32-0.805.001.80-1.08Variation of y
22、with x from laboratory data86420-2-4-6-8-10-2-10123xVariation of y with x from experimental datayFitting a polynomial of order n to the data points (xi, yi)>> coef_poly = polyfit(x,y,n)n is the order of the polynomial.coef_poly is the vector of the coefficients of a polynomial of order n that
23、best fits the data (xi, yi) in a least square sense.We can then use the vector coef_poly to evaluate thepolynomial for the given x values>> x = -2, -1.8, .;>> y = -8.43, -6.38, .;>> coef_poly = polyfit(x,y,3);>> y_hat = polyval(coef_poly, x);>> figure, plot(x, y_hat,
24、39;-', x, y, 'o')Third order polynomial fitted to experimental data86420-2Fitted polynomialObserved data-4-6-8-10-2-10123xThird order polynomial fitted to experimental data yCURVE FITTING by LSETechnique used for fitting an algebraic function to data.Usually done by the Least Square Erro
25、r (LSE) method.xyxyxy0.0030.997.0018.9514.0036.030.5022.677.5022.8314.5035.251.0018.968.0023.5015.0032.991.5018.178.5022.5615.5024.942.0015.629.0020.0216.0018.852.5016.149.5016.7316.5010.463.0015.7810.0010.8417.007.793.5011.7910.507.3917.506.224.0012.0111.005.7818.0010.744.509.0811.509.7318.5019.315
26、.008.2812.0011.7819.0026.795.5010.7612.5018.1219.5036.836.0012.2813.0025.4120.0045.176.5015.0813.5031.28Graphical representation of the experimental dataTheoretical or empirical relationshipay =+ b x+ c xsin( x) + dx +1ayi =+ b xi+ c xi sin( xi ) + dxi + 1i = 1, 2,., 41Derivation of parametersOnly 4
27、 unknown parameters (a, b, c and d), but41 equations.Equations are said to be overdetermined.In other words, no set of a, b, c and d values would satisfy all the 41 equations.Consequently, for any choice of the parameters, the 41 equations can be written in the following formæöa- çx+
28、c xi sin( xi ) + d ÷ = ei+ 1 + b xiyièøii = 1, 2,., 41LSE Methodei is the experimental error and/or inaccuracies inthe theoretical m.Determine the parameters a, b, c and d to minimise the error terms ei in some sense. not good to minimise the sum of the errors as the positive and nega
29、tive errors can cancel each other out.Minimise the sum of the squares of the errors, because the squares are always positive and they do not cancel each other out.a+ bx+ cx sin(x ) + d = yx + 1iiiiii = 1, 2,., 41é1ù1xx sin(x )ê xúúú+ 1111êê1é y1ù
30、0;úúúúúúúú1xx2 sin(x2 ).1úú.ú.úê yê x+ 1. 12êêêêêêêê22éaù.êbúêúúê úêcú=ê yixx sin(x )1úú.ú.úêêê
31、 xêdú+ 1.iii.ë ûêêêiê.êyúêë41 úûêúú1úûê1ê xxx41 sin(x41 )+ 141ë41= y A * parametersDefine matrix A and the vertical vector y.Determine parameters a, b, c and d fromparameters = Ay.Always use
32、 the backlash operator to solve a set of linear equations.If the number of unknowns and equations are equal to each other, there would be a unique set of parameter values which would satisfy allthe equations. = yA * parametersIf the number of equations are more than the number of parameters, then th
33、e equations will be solved using the Least Square Error technique.Commandsx = 0:0.5:20;y =30.99 22.67 18.96 18.17 15.62 16.14 15.7811.7922.8312.01 9.088.28 10.76 12.28 15.08 18.9523.50 22.56 20.02 16.73 10.84 7.39 5.789.73 11.78 18.12 25.41 31.28 36.03 35.25 32.9924.94 18.85 10.46 7.79 6.22 10.74 19
34、.31 26.7936.83 45.17;x = x(:);y = y(:);N = length(x);= yA * parameters>> A = 1./(x+1)xx.*sin(x)ones(N,1);>> C = AyPlot a smooth curve through the data pointsxn = linspace (0, 20, 200);y_p = C(1)./(xn+1)+C(2)*xn + . C(3)*xn.*sin(xn)+C(4);figure, plot (x, y, 'o', xn, y_p, '-
35、9;), grid on, axis squarexlabel('x','Fontsize',14),ylabel('y','Fontsize',14) title('Fitting curve ', 'Fontsize',14)legend('Measured data',' LSE')50INTERPOLATIONHave a set of x and y values.Pass a smooth curve through these pointsor find
36、 the value of y for some intermediate xvalues.This operation is called interpolation.Not same as curve fitting, as in curve fitting, the fitted curve does not, in general, pass through the data points.function interp1The function interp1 can be used for one-dimensional interpolation.Teral form of th
37、is function isy_new = interp1 (x, y, x_new, 'method')nearest, linear, 'spline, cubiccommands>> x_new = linspace(0,20,200);>> y_new = interp1(x,y, x_new,'spline');>> figure, plot (x, y, 'o', x_new, y_new, '-')>> grid on, axis square54functio
38、n interp2Two-dimensional interpolation.Teral form of this function isy_new = interp2 (x, y, f(x,y), x_new, y_new'method')nearest, linear, 'spline, cubiccommandsX,Y = meshgrid(-3:0.25:3);Z = peaks(X,Y);XI,YI = meshgrid(-3:0.125:3);ZI = interp2(X,Y,Z,XI,YI);figure, mesh(X,Y,Z), hold on, me
39、sh(XI,YI,ZI+15)hold off, axis(-3 3 -3 3 -5 20)FINDING THE MINIMUMOF A FUNCTIONy = 2x4 - 55x3 + 506.02x2 - 1755.89x + 1670.7925002000150010005000-50002468101214xyThe command fminsearchFminsearch ('fun', X0) tries to find a local minimum of the function fun near X0.>> equation = '2*x
40、.4-55*x.3+506.02*x.2-1755.89*x.79'>> x_min_1 = fminsearch (equation,12)x_min_1 = 10.7745>> x_min_2 = fminsearch (equation, 5)x_min_2 = 2.9537Minimum of a function defined by M-filefunction y = f_poly_1(x)y = 2*x.4 - 55*x.3 + 506.02*x.2 -1755.89*x + 1670.79;>> x_min_1 = fminsear
41、ch('f_poly_1',12)x_min_1 = 10.7745>> x_min_2 = fminsearch('f_poly_1',5)x_min_2 = 2.9537The value of the function at its minimum>> y_min_1 = f_poly_1 (x_min_1)y_min_1 =-345.1092>> y_min_2 = f_poly_1(x_min_2)y_min_2 =-365.9617Quick Excise1) Write a function M-file to
42、calculate y with given input x accordingto𝑦 = 3𝑒𝑥 + sin 4𝑥 𝑥 𝑥2) Then fits a polynomial of order 5, 10, to the (x, y) data.3) Plot y, and the fitted polynomial against the given x values.4) Interpolate y (y_new) according to new x values (x_new) by usi
43、ng spline interpolation method5) Plot x, yand x_new, y_newFunction inputs: x=-2:0.2:3, x_new= -1:0.05:2Functio outputs: figure 1,figure 2,figure 3,plot x,y and x5,y5; plot x, y and x10,y10plot x, y and x_new, y_newHome work基礎及其應用Section 5.7 P154Section 6.9 P183Section 7.6 P212STATISTICALANALYSIS AND
44、 SIMULATIONRandom Samples from aUniform Distribution between zero and one>> xx = rand(3,5)xx = 0.67210.83810.01960.68130.37950.83180.50280.70950.42890.30460.18970.19340.68220.30280.5417Random Samples from a Uniform Distribution between a and b>> a = 10;>> b = 85;>> xx = rand(
45、3,5);>> yy = (b-a)*xx + ayy =60.410372.858911.473061.095838.461172.384747.711063.210442.166932.846324.224024.507361.166732.707350.6255Random Integers between -20 & 150First simulate random numbers between -20 and 150>> a = -20;>> b = 150;>> xx = rand(3,5);>> yy = (b
46、-a)*xx+ayy =72.6372121.2067109.0900126.7859123.1127-12.1738100.3727102.597723.815615.742888.2388-4.107791.0830136.046477.3836Then use the function round to convert the realnumbers into integers.>> zz = round(yy)zz =73121109127123-12100103241688-49113677Standardised Gaussian (Normal) random var
47、iableStandardised Gaussian random variable0.4E(X) = 0;(X) = 1;0.350-4-20x24probability density functionRandom Samples from a Standardised Gaussian Distribution>> xx = randn(3,5)xx = 2.02110.5018-1.99830.27230.33680.1378-1.6106-1.0075-0.5144-2.08891.04610.2153-0.1624-0.1758
48、1.1022Gaussian random variableGaussian random variable, meany=175, stdy = 200.02mean_y = 175;sigma_y = 20;0.0150.010.005050100150200250300yprobability density functionRandom Samples from a Gaussian Distribution>> mean_y = 175;>> sigma_y = 20;First simulate random numbers from a standardi
49、sed Gaussian random variable.>> x = randn(3,5)x =0.89790.50580.3299-0.09010.64811.7347-0.0858-0.30831.4596-1.4038-0.70920.63300.2215-1.33260.7305Random Samples from a Gaussian DistributionThen use the following relationship to change the standard deviation and the mean of the random variable.&
50、gt;> y = sigma_y*x + mean_yy =192.9581185.1164181.5986173.1973187.9621209.6938173.2833168.8337204.1930146.9244160.8168187.6603179.4303148.3489189.6097Sample mean and standard deviation>> mean_y = 175;>> sigma_y = 20;>> x = randn(1,1000);mean_y =174.7924>> y = sigma_y*x + m
51、ean_y;std_y =19.6464>> mean_y = mean(y)>> std_y = std(y)Uniform distribution>> a=1000;>> b=10000;>> xx = rand(1,2500);>> yy = (b-a)*xx + a;>> hist(yy,20)>> xlabel('bins')>> ylabel('number of elements in each bin')>> title('Histogram
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 行政組織理論的數(shù)字化轉型進程試題及答案
- 數(shù)據(jù)流量異常監(jiān)測技術試題及答案
- 畜牧養(yǎng)殖廢棄物資源化利用模式創(chuàng)新與推廣機制實施效果評估考核試卷
- 三級計算機嵌入式備考注意事項試題及答案
- 行政組織理論中的利益平衡試題及答案
- 數(shù)據(jù)庫查詢方式的選擇試題及答案
- 網(wǎng)絡技術測試與驗證的方法論試題及答案
- 計算機三級嵌入式系統(tǒng)實踐能力考核試題及答案
- 小區(qū)環(huán)衛(wèi)工人管理制度
- 公司對外付款管理制度
- 第2講科研不端不當行為及其桅
- 青少年的營養(yǎng)與膳食
- 電競酒店的計劃書
- 社區(qū)警務培訓課件
- GJB438C模板-軟件開發(fā)計劃(已按標準公文格式校準)
- 血友病性關節(jié)炎的治療及護理
- 《北京五日游》課件
- 2023版馬克思主義基本原理課件 專題八 共產主義論
- 半導體物理與器件(第4版)尼曼課后答案【半導體物理與器件】【尼曼】課后小結與重要術語解
- 電氣英文文獻+翻譯
- 《個人壽險業(yè)務人員基本管理辦法》平安
評論
0/150
提交評論