




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、學習-好資料課題二元一次方程組應用題課時單編號:教師姓名班主任姓名教學主管日期時間段本次課時數(shù)累計課時數(shù)教學目標探究二A次方程組解決實際問題進一步提高分析問題中的等量關系、設未知數(shù)、列方程組、解方程組的能力。教學重點二A次方程組解決實際問題教學難點分析問題中的等量關系教學方法啟發(fā)式、講練結(jié)合、歸納總結(jié)素材來源教輔資料教學步驟教學內(nèi)容知識與 方法知識點梳 理一、知識點梳理:1、列方程組解應用題的基本思想:列方程組解應用題是把“未知”轉(zhuǎn)化為“已知”的重要方法,它的關鍵是把已知量和未知量聯(lián)系起來,找出題目中的相等關系2、利用二e-次方程組解決實際問題的步驟:(i)審題:弄清題意及題目中的數(shù)量關系;(
2、2)設未知數(shù):可直接設元,也可間接設元;(3)找出題目中的等量關系;(4)列出方程組:根據(jù)題目中表示全部含義的等量關系列出方程,并組成方程組;(5)解所列的方程組,并檢驗解的正確性;(6)寫出答案.題型歸類二、題型歸類類型一:行程問題1.甲、乙兩地相距 160千米,一輛汽車和一輛拖拉機同時由甲、乙兩地相同而行,1小日20分相遇.相遇后,拖拉機繼續(xù)前進,汽車在相遇處停留1小時后調(diào)轉(zhuǎn)車頭原速返回,在汽車再次出發(fā)半小時后追上了拖拉機.這時,汽車、拖拉機各自行駛了多少千米?思路點撥:畫直線型示意圖理解題意:1 網(wǎng)如2(2)有兩個等量關系:J1 一相向而行:汽車行駛:小時的路程+拖拉機行駛E小時的路程=
3、160千米;一 一 L一 ( 1+-)同向而行:汽車行駛 I小時的路程=拖拉機行駛2小時的路程.解:設汽車的速度為每小時行k千米,拖拉機的速度為每小時了千米.二1_工+山=1必;1L根據(jù)題意,列方程組解這個方程組,得:/二百口UO :|1» 1 I 1G5 汗木:卜3口1三+-8型干米3 .答:汽車行駛了 165千米,拖拉機行駛了 85千米.總結(jié)升華:列方程組解應用題, 首先要設未知數(shù),多數(shù)題目可以直接設未知數(shù),但并不是千篇一律的,問什么就設什么。有時候需要設間接未知數(shù),有時候需要設 輔助未知數(shù)。練習:甲、乙兩人相距36千米,相向而行,如果甲比乙先走 2小時,那么他們在乙 出發(fā)2.5
4、小時后相遇;如果乙比甲先走 2小時,那么他們在甲出發(fā) 3小時后相遇, 甲、乙兩人每小時各走多少千米?類型二:工程問題2.一家商店要進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共 3520元;若先請甲組單獨做 6天,再請乙組單獨做 12天可完成, 需付兩組費用共 3480元,問:(1)甲、乙兩組工作一天,商店應各付多少元? (2) 已知甲組單獨做需12天完成,乙組單獨做需 24天完成,單獨請哪組,商店所付費 用最少?解:(1)設甲組單獨做一天商店應付x元,乙組單獨做一天商店應付y元,依題意得:更多精品文檔"&h+>)=3熨0, ®6x +
5、2y=34. fx- 300解得口答:甲組單獨做一天商店應付300元,乙組單獨做一天商店應付140元。(2)單獨請甲組做,需付款 300X 12= 3600元,單獨請乙組做,需付款 24X140 = 3360元,故請乙組單獨做費用最少。練習:小明家準備裝修一套新住房,若甲、乙兩個裝飾公司合作 6周完成需工錢5.2萬元;若甲公司單獨做 4周后,剩下的由乙公司來做,還需9周完成,需工錢 4.8萬元.若只選一個公司單獨完成, 從節(jié)約開支的角度考慮, 小明家應選甲公司還是乙 公司?請你說明理由.類型三:商品銷售利潤問題 3.有甲、乙兩件商品,甲商品的利潤率為 5%,乙商品的利潤率為4%,共可 獲利46
6、元。價格調(diào)整后,甲商品的利潤率為 4%乙商品的利潤率為 5%共可獲利 44元,則兩件商品的進價分別是多少元?思路點撥:做此題的關鍵要知道:禾1潤=進價X禾IJ潤率解:甲商品的進價為 x元,乙商品的進價為 y元,由題意得:五十卜= 60014%工+5%步=加,解得:答:兩件商品的進價分別為 600元和400元。練習:某商場用36萬元購進A、B兩種商品,銷售完后共獲利 6萬元,其進價和售 價如下表:AB進價(元/件)12001000售價(元/件)13801200求該商場購進 A、B兩種商品各多少件;(注:獲利 =售價一進價)類型四:銀行儲蓄問題 4.小明的媽媽為了準備小明一年后上高中的費用,現(xiàn)在以
7、兩種方式在銀行 共存了 2000元錢,一種是年利率為 2.25 %的教育儲蓄,另一種是年利率為2.25 %的一年定期存款,一年后可取出2042.75元,問這兩種儲蓄各存了多少錢?(利息所得稅=利息金額X 20%教育儲蓄沒有利息所得稅)思路點撥:設教育儲蓄存了 x元,一年定期存了 y元,我們可以根據(jù)題意可列出表格:解:設存一年教育儲蓄的錢為x元,存一年定期存款的錢為y元,則列方程:尸20。-八rx = 15(1040.022力+川+0.0225"。=2042.75,解得:卜阿答:存教育儲蓄的錢為 1500元,存一年定期的錢為500元.練習:李明以兩種形式分別儲蓄了2000元和1000元
8、,一年后全部取出,扣除利息所得稅可得利息 43.92元.已知兩種儲蓄年利率的和為3.24%,問這兩種儲蓄的年利率各是百分之幾?(注:公民應繳利息所得稅=利息金額X 20%)類型五:生產(chǎn)中的配套問題C5.某服裝廠生產(chǎn)一批某種款式的秋裝,已知每 2米的某種布料可做上衣 的衣身3個或衣袖5只.現(xiàn)計劃用132米這種布料生產(chǎn)這批秋裝(不考慮布料的損 耗),應分別用多少布料才能使做的衣身和衣袖恰好配套?解:設用x米布料做衣身,用y米布料做衣袖才能使衣身和衣袖恰好配套, 根據(jù)題意,得:T+, - 132答:用60米布料做衣身,用72米布料做衣袖才能使做的衣身和衣袖恰好配套,練習:某工廠有工人60人,生產(chǎn)某種
9、由一個螺栓套兩個螺母的配套產(chǎn)品,每人每天生產(chǎn)螺栓14個或螺母20個,應分配多少人生產(chǎn)螺栓,多少人生產(chǎn)螺母,才能使生 產(chǎn)出的螺栓和螺母剛好配套。類型六:利潤率問題46.某工廠去年的利潤(總產(chǎn)值一總支出)為 200萬元,今年總產(chǎn)值比去年增加了 20%總支出比去年減少了10%今年的利潤為 780萬元,去年的總產(chǎn)值、總支出各是多少萬元?思路點撥:設去年的總產(chǎn)值為 x萬元,總支出為y萬元,則有總產(chǎn)值(力兀)總支出(萬元)利潤(力兀)去年xy200今年120%x90%y780解:設去年的總產(chǎn)值為 x萬元,總支出為y萬元,根據(jù)題意得:x-y- 200= 2000I1之帆i - 9。%> = 7叫解之得
10、:b = 1 SOO答:去年的總產(chǎn)值為 2000萬元,總支出為1800萬元練習:某城市現(xiàn)有人口 42萬,估計一年后城鎮(zhèn)人口增加0.8%,農(nóng)村人口增加1.1%,這樣全市人口增加1%求這個城市的城鎮(zhèn)人口與農(nóng)村人口。類型七:濃度問題7.現(xiàn)有兩種酒精溶液,甲種酒精溶液的酒精與水的比是3 : 7,乙種酒精溶液的酒精與水的比是 4 : 1,今要得到酒精與水的比為 3 : 2的酒精溶液50kg, 問甲、乙兩種酒精溶液應各取多少?思路點撥:本題欲求兩個未知量,可直接設出兩個未知數(shù),然后列出二元一次 方程組解決,題中有以下幾個相等關系:(1)甲種酒精溶液與乙種酒精溶液的質(zhì)量之和=50; (2)混合前兩種溶液所含
11、純酒精質(zhì)量之和=混合后的溶液所含純酒精的 質(zhì)量;解:設甲、乙兩種酒精溶液分別取x kg , y kg.依題意得:卜 4A = I i 343解得"3。答:甲取20kg,乙取30kg練習:要配濃度是45%勺鹽水12千克,現(xiàn)有10%勺鹽水與85%勺鹽水,這兩種鹽水 各需多少?類型八:優(yōu)化方案問題:C8.某地生產(chǎn)一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1000元;經(jīng)粗加工后銷售, 每噸利潤可達4500元;經(jīng)精加工后銷售, 每噸利潤漲至7500元. 當?shù)匾患肄r(nóng)工商公司收獲這種蔬菜140噸,該公司加工廠的生產(chǎn)能力是:如果對蔬菜進行粗加工, 每天可以加工16噸;如果進行細加工, 每天可加工6
12、噸.但兩種加 工方式不能同時進行.受季節(jié)條件的限制,公司必須在15天之內(nèi)將這批蔬菜全部銷 售或加工完畢,為此公司研制了三種加工方案方案一:將蔬菜全部進行粗加工;方案二:盡可能多的對蔬菜進行精加工,沒來得及加工的蔬菜在市場上直接銷 隹.口,方案三:將部分蔬菜進行精加工,其余蔬菜進行粗加工,并恰好在15天完成你認為選擇哪種方案獲利最多?為什么?解:方案一獲利為:4500 X 140=630000(元).方案二獲利為:7500 X (6 X 15)+1000 X (140 6 X 15)=675000+50000=725000(元).方案三獲利如下:設將x噸蔬菜進行精加工,丁噸蔬菜進行粗加工,則根據(jù)
13、題意,得:一丹一14Q3二 60十二=15v-gn/,解得:所以方案三獲利為:7500 X 60+4500 X 80=810000(元).因為630000V 725000 <810000,所以選擇方案三獲利最多答:方案三獲利最多,最多為 810000元。練習:某商場計劃撥款9萬元從廠家購進 50臺電視機,已知廠家生產(chǎn)三種不同型號 的電視機,出廠價分別為:甲種每臺1500元,乙種每臺 2100元,丙種每臺2500元。(1)若商場同時購進其中兩種不同型號的電視機50臺,用去9萬元,請你研究一下商場的進貨方案;(2)若商場銷售一臺甲、乙、丙電視機分別可獲利150元、200元、250元,在以上的
14、方案中,為使獲利最多,你選擇哪種進貨方案?9 .如圖,用類型九:幾何問題8塊相同的長方形地磚拼成一個長方形,每塊長方形地磚的長和寬分別是多少?解:設長方形地磚的長 xcm,寬ycm,由題意得:答:每塊長方形地磚的長為45cm、寬為15cmi練習:用長48厘米的鐵絲彎成一個矩形,若將此矩形的長邊剪掉 3厘米,補到較短邊上去,則得到一個正方形,求正方形的面積比矩形面積大多少?課后作業(yè)四、課后作業(yè)1、兩地相距280千米,一艘船在其間航行,順流用 14小時,逆流用20小時,求船 在靜水中的速度和水流速度。2、小敏的爸爸為了給她籌備上高中的費用,在銀行同時用兩種方式共存了4000兀錢.A種,一年期整存整取,共反復存了3次,每次存款數(shù)都相同,這種存款銀行利率為年息2.25%;第二
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 印度道路安全培訓課件
- 危險廢物環(huán)保試題及答案
- 測氧儀培訓試題及答案
- 廣告設計師考試互動性設計元素試題及答案
- 成功備考的紡織工程師考試試題及答案
- 最基本的普法試題及答案
- 政治青島一模試題及答案
- 2024年行業(yè)標準下的設計師考試試題及答案
- 助理廣告師備考過程中的常見誤區(qū)試題及答案
- 公安警校面試題及答案
- 《《定制式醫(yī)療器械醫(yī)工交互全過程監(jiān)控及判定指標與接受條件》》
- 第12課 19世紀下半期資本主義的擴展
- 2022版藝術(shù)新課標解讀心得(課件)小學美術(shù)
- 鋰離子電池失效分析及后果PFMEA-電子表格版
- 律師事務所法律咨詢委托書
- 中華人民共和國保守國家秘密法實施條例
- 人美版八年級美術(shù)下冊《1. 繪畫的多元化》說課稿
- DB34T4829-2024公路工程泡沫輕質(zhì)土設計與施工技術(shù)規(guī)程
- 【新課標核心素養(yǎng)目標】6.2.1二氧化碳的性質(zhì)和用途教案(表格式)初中化學人教版(2024)九年級上冊
- 預防性侵害安全教育
- 人教版高中物理必修1第三章《彈力》
評論
0/150
提交評論