版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上高一數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)大全 <Strong>高一數(shù)學(xué)必修二空間兩直線的位置關(guān)系知識(shí)點(diǎn)歸納</Strong> 空間兩條直線只有三種位置關(guān)系:平行、相交、異面 1、按是否共面可分為兩類: (1)共面:平行、相交 (2)異面: 異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。 異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。 兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法 兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法 2、若從有無公
2、共點(diǎn)的角度看可分為兩類: (1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒有公共點(diǎn)——平行或異面 直線和平面的位置關(guān)系: 直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行 直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn) 直線和平面相交——有且只有一個(gè)公共點(diǎn) 直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。 空間向量法(找平面的法向量) 規(guī)定:a、直線與平面垂直時(shí),所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0&
3、amp;deg;角 由此得直線和平面所成角的取值范圍為0°,90° 最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角 三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直 直線和平面垂直 直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。 直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。 直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩
4、條直線平行。直線和平面平行——沒有公共點(diǎn) 直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。 直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。 直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。 <Strong>高一數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié):多面體</Strong> 1、棱柱 棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每兩個(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫
5、做棱柱。 棱柱的性質(zhì) (1)側(cè)棱都相等,側(cè)面是平行四邊形 (2)兩個(gè)底面與平行于底面的截面是全等的多邊形 (3)過不相鄰的兩條側(cè)棱的截面(對(duì)角面)是平行四邊形 2、棱錐 棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐 棱錐的性質(zhì): (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形 (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方 3、正棱錐 正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。 正棱錐的性質(zhì): (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰
6、三角形底邊上的高相等,它叫做正棱錐的斜高。 (3)多個(gè)特殊的直角三角形 a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。 b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。 <Strong>高一數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié):兩個(gè)平面的位置關(guān)系</Strong> (1)兩個(gè)平面互相平行的定義:空間兩平面沒有公共點(diǎn) (2)兩個(gè)平面的位置關(guān)系: 兩個(gè)平面平行-沒有公共點(diǎn);兩個(gè)平面相交-有一條公共直線。 a、平行 兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這
7、兩個(gè)平面平行。 兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。b、相交 二面角 (1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。 (2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為0°,180° (3)二面角的棱:這個(gè)條直線叫做二面角的棱。 (4)二面角的面:這兩個(gè)半平面叫做二面角的面。 (5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。 (6)直二面角:平面角是直角的二面角叫做直二面角。 <Strong>高一數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié):兩平面垂直</Strong> 兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個(gè)平面互相垂直。記為⊥ 兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《職業(yè)農(nóng)民培育》課件
- 2024年鄉(xiāng)鎮(zhèn)組織員個(gè)人年終工作總結(jié)
- 《旅行社的戰(zhàn)略管理》課件
- 協(xié)力共贏:團(tuán)隊(duì)力量
- 酒店前廳保安執(zhí)勤要領(lǐng)
- 保險(xiǎn)行業(yè)銷售技巧培訓(xùn)總結(jié)
- 2001年天津高考語文真題及答案(圖片版)
- 媒體行業(yè)客服工作感想
- 景觀設(shè)計(jì)師年終總結(jié)7篇
- 2023年項(xiàng)目管理人員安全培訓(xùn)考試題(能力提升)
- 老舊小區(qū)改造工程安全管理體系管理制度及措施
- 2024年山西省晉中市公開招聘警務(wù)輔助人員(輔警)筆試摸底測(cè)試(3)卷含答案
- 2024夏令營項(xiàng)目家長溝通與反饋服務(wù)協(xié)議3篇
- 文史哲與藝術(shù)中的數(shù)學(xué)知到智慧樹章節(jié)測(cè)試課后答案2024年秋吉林師范大學(xué)
- 2024年秋季新人教版七年級(jí)上冊(cè)數(shù)學(xué)全冊(cè)教案
- 13485質(zhì)量管理培訓(xùn)
- 9《復(fù)活(節(jié)選)》練習(xí) (含答案)統(tǒng)編版高中語文選擇性必修上冊(cè)
- 工程主合同補(bǔ)充協(xié)議書范本(2篇)
- 智慧樓宇I(lǐng)BMS整體解決方案
- 《客房服務(wù)與管理》課程標(biāo)準(zhǔn)課程內(nèi)容與要求
- GB 26920-2024商用制冷器具能效限定值及能效等級(jí)
評(píng)論
0/150
提交評(píng)論