第38講 導(dǎo)數(shù)、定積分_第1頁(yè)
第38講 導(dǎo)數(shù)、定積分_第2頁(yè)
第38講 導(dǎo)數(shù)、定積分_第3頁(yè)
第38講 導(dǎo)數(shù)、定積分_第4頁(yè)
第38講 導(dǎo)數(shù)、定積分_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué) 人教版高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座38)導(dǎo)數(shù)、定積分一課標(biāo)要求:1導(dǎo)數(shù)及其應(yīng)用(1)導(dǎo)數(shù)概念及其幾何意義通過(guò)對(duì)大量實(shí)例的分析,經(jīng)歷由平均變化率過(guò)渡到瞬時(shí)變化率的過(guò)程,了解導(dǎo)數(shù)概念的實(shí)際背景,知道瞬時(shí)變化率就是導(dǎo)數(shù),體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵;通過(guò)函數(shù)圖像直觀地理解導(dǎo)數(shù)的幾何意義。(2)導(dǎo)數(shù)的運(yùn)算能根據(jù)導(dǎo)數(shù)定義求函數(shù)y=c,y=x,y=x2,y=x3,y=1/x,y=x 的導(dǎo)數(shù);能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù),能求簡(jiǎn)單的復(fù)合函數(shù)(僅限于形如f(ax+b)的導(dǎo)數(shù);會(huì)使用導(dǎo)數(shù)公式表。(3)導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用結(jié)合實(shí)例,借助幾何直

2、觀探索并了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過(guò)三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間;結(jié)合函數(shù)的圖像,了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;會(huì)用導(dǎo)數(shù)求不超過(guò)三次的多項(xiàng)式函數(shù)的極大值、極小值,以及閉區(qū)間上不超過(guò)三次的多項(xiàng)式函數(shù)最大值、最小值;體會(huì)導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性。(4)生活中的優(yōu)化問(wèn)題舉例例如,使利潤(rùn)最大、用料最省、效率最高等優(yōu)化問(wèn)題,體會(huì)導(dǎo)數(shù)在解決實(shí)際問(wèn)題中的作用。(5)定積分與微積分基本定理通過(guò)實(shí)例(如求曲邊梯形的面積、變力做功等),從問(wèn)題情境中了解定積分的實(shí)際背景;借助幾何直觀體會(huì)定積分的基本思想,初步了解定積分的概念;通過(guò)實(shí)例(如變速運(yùn)動(dòng)物

3、體在某段時(shí)間內(nèi)的速度與路程的關(guān)系),直觀了解微積分基本定理的含義。(6)數(shù)學(xué)文化收集有關(guān)微積分創(chuàng)立的時(shí)代背景和有關(guān)人物的資料,并進(jìn)行交流;體會(huì)微積分的建立在人類(lèi)文化發(fā)展中的意義和價(jià)值。具體要求見(jiàn)本標(biāo)準(zhǔn)中數(shù)學(xué)文化的要求。二命題走向?qū)?shù)是高中數(shù)學(xué)中重要的內(nèi)容,是解決實(shí)際問(wèn)題的強(qiáng)有力的數(shù)學(xué)工具,運(yùn)用導(dǎo)數(shù)的有關(guān)知識(shí),研究函數(shù)的性質(zhì):?jiǎn)握{(diào)性、極值和最值是高考的熱點(diǎn)問(wèn)題。在高考中考察形式多種多樣,以選擇題、填空題等主觀題目的形式考察基本概念、運(yùn)算及導(dǎo)數(shù)的應(yīng)用,也經(jīng)常以解答題形式和其它數(shù)學(xué)知識(shí)結(jié)合起來(lái),綜合考察利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值,估計(jì)2007年高考繼續(xù)以上面的幾種形式考察不會(huì)有大的變化:(

4、1)考查形式為:選擇題、填空題、解答題各種題型都會(huì)考察,選擇題、填空題一般難度不大,屬于高考題中的中低檔題,解答題有一定難度,一般與函數(shù)及解析幾何結(jié)合,屬于高考的中低檔題;(2)07年高考可能涉及導(dǎo)數(shù)綜合題,以導(dǎo)數(shù)為數(shù)學(xué)工具考察:導(dǎo)數(shù)的物理意義及幾何意義,復(fù)合函數(shù)、數(shù)列、不等式等知識(shí)。定積分是新課標(biāo)教材新增的內(nèi)容,主要包括定積分的概念、微積分基本定理、定積分的簡(jiǎn)單應(yīng)用,由于定積分在實(shí)際問(wèn)題中非常廣泛,因而07年的高考預(yù)測(cè)會(huì)在這方面考察,預(yù)測(cè)07年高考呈現(xiàn)以下幾個(gè)特點(diǎn):(1)新課標(biāo)第1年考察,難度不會(huì)很大,注意基本概念、基本性質(zhì)、基本公式的考察及簡(jiǎn)單的應(yīng)用;高考中本講的題目一般為選擇題、填空題,

5、考查定積分的基本概念及簡(jiǎn)單運(yùn)算,屬于中低檔題;(2)定積分的應(yīng)用主要是計(jì)算面積,諸如計(jì)算曲邊梯形的面積、變速直線(xiàn)運(yùn)動(dòng)等實(shí)際問(wèn)題要很好的轉(zhuǎn)化為數(shù)學(xué)模型。三要點(diǎn)精講1導(dǎo)數(shù)的概念函數(shù)y=f(x),如果自變量x在x處有增量,那么函數(shù)y相應(yīng)地有增量=f(x+)f(x),比值叫做函數(shù)y=f(x)在x到x+之間的平均變化率,即=。如果當(dāng)時(shí),有極限,我們就說(shuō)函數(shù)y=f(x)在點(diǎn)x處可導(dǎo),并把這個(gè)極限叫做f(x)在點(diǎn)x處的導(dǎo)數(shù),記作f(x)或y|。即f(x)=。說(shuō)明:(1)函數(shù)f(x)在點(diǎn)x處可導(dǎo),是指時(shí),有極限。如果不存在極限,就說(shuō)函數(shù)在點(diǎn)x處不可導(dǎo),或說(shuō)無(wú)導(dǎo)數(shù)。(2)是自變量x在x處的改變量,時(shí),而是函數(shù)值

6、的改變量,可以是零。由導(dǎo)數(shù)的定義可知,求函數(shù)y=f(x)在點(diǎn)x處的導(dǎo)數(shù)的步驟(可由學(xué)生來(lái)歸納):(1)求函數(shù)的增量=f(x+)f(x);(2)求平均變化率=;(3)取極限,得導(dǎo)數(shù)f(x)=。2導(dǎo)數(shù)的幾何意義函數(shù)y=f(x)在點(diǎn)x處的導(dǎo)數(shù)的幾何意義是曲線(xiàn)y=f(x)在點(diǎn)p(x,f(x)處的切線(xiàn)的斜率。也就是說(shuō),曲線(xiàn)y=f(x)在點(diǎn)p(x,f(x)處的切線(xiàn)的斜率是f(x)。相應(yīng)地,切線(xiàn)方程為yy=f/(x)(xx)。3常見(jiàn)函數(shù)的導(dǎo)出公式()(C為常數(shù))()()()4兩個(gè)函數(shù)的和、差、積的求導(dǎo)法則法則1:兩個(gè)函數(shù)的和(或差)的導(dǎo)數(shù),等于這兩個(gè)函數(shù)的導(dǎo)數(shù)的和(或差),即: (法則2:兩個(gè)函數(shù)的積的導(dǎo)數(shù)

7、,等于第一個(gè)函數(shù)的導(dǎo)數(shù)乘以第二個(gè)函數(shù),加上第一個(gè)函數(shù)乘以第二個(gè)函數(shù)的導(dǎo)數(shù),即:若C為常數(shù),則.即常數(shù)與函數(shù)的積的導(dǎo)數(shù)等于常數(shù)乘以函數(shù)的導(dǎo)數(shù):法則3兩個(gè)函數(shù)的商的導(dǎo)數(shù),等于分子的導(dǎo)數(shù)與分母的積,減去分母的導(dǎo)數(shù)與分子的積,再除以分母的平方:=(v0)。形如y=f的函數(shù)稱(chēng)為復(fù)合函數(shù)。復(fù)合函數(shù)求導(dǎo)步驟:分解求導(dǎo)回代。法則:y|= y|u|5導(dǎo)數(shù)的應(yīng)用(1)一般地,設(shè)函數(shù)在某個(gè)區(qū)間可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù);如果在某區(qū)間內(nèi)恒有,則為常數(shù);(2)曲線(xiàn)在極值點(diǎn)處切線(xiàn)的斜率為0,極值點(diǎn)處的導(dǎo)數(shù)為0;曲線(xiàn)在極大值點(diǎn)左側(cè)切線(xiàn)的斜率為正,右側(cè)為負(fù);曲線(xiàn)在極小值點(diǎn)左側(cè)切線(xiàn)的斜率為負(fù),右側(cè)為正;(3)一般

8、地,在區(qū)間a,b上連續(xù)的函數(shù)f在a,b上必有最大值與最小值。求函數(shù)在(a,b)內(nèi)的極值; 求函數(shù)在區(qū)間端點(diǎn)的值(a)、(b); 將函數(shù)的各極值與(a)、(b)比較,其中最大的是最大值,其中最小的是最小值。6定積分(1)概念設(shè)函數(shù)f(x)在區(qū)間a,b上連續(xù),用分點(diǎn)ax0x1xi1xixnb把區(qū)間a,b等分成n個(gè)小區(qū)間,在每個(gè)小區(qū)間xi1,xi上取任一點(diǎn)i(i1,2,n)作和式In(i)x(其中x為小區(qū)間長(zhǎng)度),把n即x0時(shí),和式In的極限叫做函數(shù)f(x)在區(qū)間a,b上的定積分,記作:,即(i)x。這里,a與b分別叫做積分下限與積分上限,區(qū)間a,b叫做積分區(qū)間,函數(shù)f(x)叫做被積函數(shù),x叫做積分

9、變量,f(x)dx叫做被積式?;镜姆e分公式:C;C(mQ, m1);dxlnC;C;C;sinxC;cosxC(表中C均為常數(shù))。(2)定積分的性質(zhì)(k為常數(shù));(其中acb。(3)定積分求曲邊梯形面積由三條直線(xiàn)xa,xb(ab),x軸及一條曲線(xiàn)yf(x)(f(x)0)圍成的曲邊梯的面積。如果圖形由曲線(xiàn)y1f1(x),y2f2(x)(不妨設(shè)f1(x)f2(x)0),及直線(xiàn)xa,xb(ab)圍成,那么所求圖形的面積SS曲邊梯形AMNBS曲邊梯形DMNC。四典例解析題型1:導(dǎo)數(shù)的概念例1已知s=,(1)計(jì)算t從3秒到3.1秒 、3.001秒 、 3.0001秒.各段內(nèi)平均速度;(2)求t=3秒是

10、瞬時(shí)速度。解析:(1)指時(shí)間改變量;指時(shí)間改變量。其余各段時(shí)間內(nèi)的平均速度,事先刻在光盤(pán)上,待學(xué)生回答完第一時(shí)間內(nèi)的平均速度后,即用多媒體出示,讓學(xué)生思考在各段時(shí)間內(nèi)的平均速度的變化情況。(2)從(1)可見(jiàn)某段時(shí)間內(nèi)的平均速度隨變化而變化,越小,越接近于一個(gè)定值,由極限定義可知,這個(gè)值就是時(shí),的極限,V=(6+=3g=29.4(米/秒)。例2求函數(shù)y=的導(dǎo)數(shù)。解析:,=-。點(diǎn)評(píng):掌握切的斜率、瞬時(shí)速度,它門(mén)都是一種特殊的極限,為學(xué)習(xí)導(dǎo)數(shù)的定義奠定基礎(chǔ)。題型2:導(dǎo)數(shù)的基本運(yùn)算例3(1)求的導(dǎo)數(shù);(2)求的導(dǎo)數(shù);(3)求的導(dǎo)數(shù);(4)求y=的導(dǎo)數(shù);(5)求y的導(dǎo)數(shù)。解析:(1),(2)先化簡(jiǎn),(3

11、)先使用三角公式進(jìn)行化簡(jiǎn).(4)y=;(5)yxy*(x)x)*()。點(diǎn)評(píng):(1)求導(dǎo)之前,應(yīng)利用代數(shù)、三角恒等式等變形對(duì)函數(shù)進(jìn)行化簡(jiǎn),然后求導(dǎo),這樣可以減少運(yùn)算量,提高運(yùn)算速度,減少差錯(cuò);(2)有的函數(shù)雖然表面形式為函數(shù)的商的形式,但在求導(dǎo)前利用代數(shù)或三角恒等變形將函數(shù)先化簡(jiǎn),然后進(jìn)行求導(dǎo)有時(shí)可以避免使用商的求導(dǎo)法則,減少運(yùn)算量。例4寫(xiě)出由下列函數(shù)復(fù)合而成的函數(shù):(1)y=cosu,u=1+(2)y=lnu, u=lnx解析:(1)y=cos(1+);(2)y=ln(lnx)。點(diǎn)評(píng):通過(guò)對(duì)y=(3x-2展開(kāi)求導(dǎo)及按復(fù)合關(guān)系求導(dǎo),直觀的得到=.給出復(fù)合函數(shù)的求導(dǎo)法則,并指導(dǎo)學(xué)生閱讀法則的證明。

12、題型3:導(dǎo)數(shù)的幾何意義例5(1)(06安徽卷)若曲線(xiàn)的一條切線(xiàn)與直線(xiàn)垂直,則的方程為( )A BC D(2)(06全國(guó)II)過(guò)點(diǎn)(1,0)作拋物線(xiàn)的切線(xiàn),則其中一條切線(xiàn)為( )(A)(B)(C)(D)解析:(1)與直線(xiàn)垂直的直線(xiàn)為,即在某一點(diǎn)的導(dǎo)數(shù)為4,而,所以在(1,1)處導(dǎo)數(shù)為4,此點(diǎn)的切線(xiàn)為,故選A;(2),設(shè)切點(diǎn)坐標(biāo)為,則切線(xiàn)的斜率為2,且,于是切線(xiàn)方程為,因?yàn)辄c(diǎn)(1,0)在切線(xiàn)上,可解得0或4,代入可驗(yàn)正D正確,選D。點(diǎn)評(píng):導(dǎo)數(shù)值對(duì)應(yīng)函數(shù)在該點(diǎn)處的切線(xiàn)斜率。例6(1)(06湖北卷)半徑為r的圓的面積S(r)r2,周長(zhǎng)C(r)=2r,若將r看作(0,)上的變量,則(r2)2r ,式可以

13、用語(yǔ)言敘述為:圓的面積函數(shù)的導(dǎo)數(shù)等于圓的周長(zhǎng)函數(shù)。對(duì)于半徑為R的球,若將R看作(0,)上的變量,請(qǐng)你寫(xiě)出類(lèi)似于的式子:;式可以用語(yǔ)言敘述為:。(2)(06湖南卷)曲線(xiàn)和在它們交點(diǎn)處的兩條切線(xiàn)與軸所圍成的三角形面積是。解析:(1)V球,又 故式可填,用語(yǔ)言敘述為“球的體積函數(shù)的導(dǎo)數(shù)等于球的表面積函數(shù)?!保唬?)曲線(xiàn)和在它們的交點(diǎn)坐標(biāo)是(1,1),兩條切線(xiàn)方程分別是y=x+2和y=2x1,它們與軸所圍成的三角形的面積是。點(diǎn)評(píng):導(dǎo)數(shù)的運(yùn)算可以和幾何圖形的切線(xiàn)、面積聯(lián)系在一起,對(duì)于較復(fù)雜問(wèn)題有很好的效果。題型4:借助導(dǎo)數(shù)處理單調(diào)性、極值和最值例7(1)(06江西卷)對(duì)于R上可導(dǎo)的任意函數(shù)f(x),若滿(mǎn)

14、足(x1)0,則必有()Af(0)f(2)2f(1)(2)(06天津卷)函數(shù)的定義域?yàn)殚_(kāi)區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖象如圖所示,則函數(shù)在開(kāi)區(qū)間內(nèi)有極小值點(diǎn)()A1個(gè)B2個(gè) C3個(gè) D4個(gè)(3)(06全國(guó)卷I)已知函數(shù)。()設(shè),討論的單調(diào)性;()若對(duì)任意恒有,求的取值范圍。解析:(1)依題意,當(dāng)x1時(shí),f(x)0,函數(shù)f(x)在(1,)上是增函數(shù);當(dāng)x1時(shí),f(x)0,f(x)在(,1)上是減函數(shù),故f(x)當(dāng)x1時(shí)取得最小值,即有f(0)f(1),f(2)f(1),故選C;(2)函數(shù)的定義域?yàn)殚_(kāi)區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖象如圖所示,函數(shù)在開(kāi)區(qū)間內(nèi)有極小值的點(diǎn)即函數(shù)由減函數(shù)變?yōu)樵龊瘮?shù)的點(diǎn),其導(dǎo)數(shù)值為由負(fù)到正的

15、點(diǎn),只有1個(gè),選A。(3):()f(x)的定義域?yàn)?,1)(1,+).對(duì)f(x)求導(dǎo)數(shù)得 f (x)= eax。()當(dāng)a=2時(shí), f (x)= e2x, f (x)在(,0), (0,1)和(1,+ )均大于0, 所以f(x)在(,1), (1,+).為增函數(shù);()當(dāng)0a0, f(x)在(,1), (1,+)為增函數(shù).;()當(dāng)a2時(shí), 01, 令f (x)=0 ,解得x1= , x2= ;當(dāng)x變化時(shí), f (x)和f(x)的變化情況如下表: x(, )(,)(,1)(1,+)f (x)f(x)f(x)在(, ), (,1), (1,+)為增函數(shù), f(x)在(,)為減函數(shù)。()()當(dāng)0f(0)

16、=1;()當(dāng)a2時(shí), 取x0= (0,1),則由()知 f(x0)1且eax1,得:f(x)= eax 1. 綜上當(dāng)且僅當(dāng)a(,2時(shí),對(duì)任意x(0,1)恒有f(x)1。點(diǎn)評(píng):注意求函數(shù)的單調(diào)性之前,一定要考慮函數(shù)的定義域。導(dǎo)函數(shù)的正負(fù)對(duì)應(yīng)原函數(shù)增減。例8(1)(06浙江卷)在區(qū)間上的最大值是( )(A)2 (B)0 (C)2 (D)4(2)(06山東卷)設(shè)函數(shù)f(x)= ()求f(x)的單調(diào)區(qū)間;()討論f(x)的極值。解析:(1),令可得x0或2(2舍去),當(dāng)1x0,當(dāng)0x1時(shí),0,所以當(dāng)x0時(shí),f(x)取得最大值為2。選C;(2)由已知得,令,解得。()當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),隨的變化情

17、況如下表:0+00極大值極小值從上表可知,函數(shù)在上單調(diào)遞增;在上單調(diào)遞減;在上單調(diào)遞增。()由()知,當(dāng)時(shí),函數(shù)沒(méi)有極值;當(dāng)時(shí),函數(shù)在處取得極大值,在處取得極小值。點(diǎn)評(píng):本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最大值和最小值的基礎(chǔ)知識(shí),以及運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。題型5:導(dǎo)數(shù)綜合題例9(06廣東卷)設(shè)函數(shù)分別在處取得極小值、極大值.平面上點(diǎn)的坐標(biāo)分別為、,該平面上動(dòng)點(diǎn)滿(mǎn)足,點(diǎn)是點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn).求(I)求點(diǎn)的坐標(biāo);(II)求動(dòng)點(diǎn)的軌跡方程.解析:()令解得;當(dāng)時(shí),, 當(dāng)時(shí),,當(dāng)時(shí),。所以,函數(shù)在處取得極小值,在取得極大值,故,。所以, 點(diǎn)A、B的坐標(biāo)為。() 設(shè),所以。又PQ的中點(diǎn)在上,所以

18、,消去得。點(diǎn)評(píng):該題是導(dǎo)數(shù)與平面向量結(jié)合的綜合題。例10(06湖南卷)已知函數(shù),數(shù)列滿(mǎn)足:證明:();()。證明: (I)先用數(shù)學(xué)歸納法證明,1,2,3, (i).當(dāng)n=1時(shí),由已知顯然結(jié)論成立。(ii).假設(shè)當(dāng)n=k時(shí)結(jié)論成立,即。因?yàn)?x0成立。于是故。點(diǎn)評(píng):該題是數(shù)列知識(shí)和導(dǎo)數(shù)結(jié)合到一塊。題型6:導(dǎo)數(shù)實(shí)際應(yīng)用題例11(06江蘇卷)請(qǐng)您設(shè)計(jì)一個(gè)帳篷。它下部的形狀是高為1m的正六棱柱,上部的形狀是側(cè)棱長(zhǎng)為3m的正六棱錐(如右圖所示)。試問(wèn)當(dāng)帳篷的頂點(diǎn)O到底面中心的距離為多少時(shí),帳篷的體積最大?本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最大值和最小值的基礎(chǔ)知識(shí),以及運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。解析:設(shè)OO1為x m,則由題設(shè)可得正六棱錐底面邊長(zhǎng)為(單位:m)。于是底面正六邊形的面積為(單位:m2):。帳篷的體積為(單位:m3):求導(dǎo)數(shù),得;令解得x=-2(不合題意,舍去),x=2。當(dāng)1x2時(shí),,V(x)為增函數(shù);當(dāng)2x0。當(dāng)x=0時(shí),t=0;當(dāng)x=a時(shí),又ds=vdt,故阻力所作的功為:(2)依題設(shè)可知拋物線(xiàn)為凸形,它與x軸的交點(diǎn)的橫坐標(biāo)分別為x1=0,x2=b/a,所以(1)又直線(xiàn)xy=4與拋物線(xiàn)y=ax2b

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論