




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上 加法原理和乘法原理 1.問題一(11) 從甲地到乙地,可以乘火車,也可以乘汽車,一天中火車有3班,汽車有2班,那么一天中,乘坐這些交通工具從甲地到乙地共有多少種方法?分析:因為一天中乘火車有3種走法,乘汽車有2種走法,每一種走法都可以從甲地到乙地,所以,共有3+2=5種不同的走法,如圖所示(12) 從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船一天中,火車有4 班, 汽車有2班,輪船有3班那么一天中乘坐這些交通工具從甲地到乙地共有多少種不同的走法? 分析:從甲地到乙地有3類方法:第一類方法,乘火車,有4種方法;第二類方法,乘汽車,有2種方法;第三類方
2、法,乘輪船,有3種方法;所以,從甲地到乙地共有4+2+3=9種方法21分類計數(shù)原理(加法原理):做一件事情,完成它可以有n類辦法,在第一類辦法中有種不同的方法,在第二類辦法中有種不同的方法,在第n類辦法中有種不同的方法那么完成這件事共有 種不同的方法3.問題二(21) 從甲地到乙地,要從甲地先乘火車到丙地,再于次日從丙地乘汽車到乙地,一天中,火車有3班,汽車有2班,那么兩天中,從甲地到乙地共有多少種不同的走法?分析:因為乘火車有3種走法,乘汽車有2種走法,所以,乘一次火車再接著乘一次汽車從甲地到乙地,共有種不同走法,如圖所示,所有走法:火車1汽車1;火車1汽車2;火車2汽車1;火車2汽車2;火
3、車3汽車1;火車3汽車2(22) 如圖,由A村去B村的道路有2條,由B村去C村的道路有3條從A村經(jīng)B村去C村,共有多少種不同的走法?分析: 從A村經(jīng) B村去C村有2步, 第一步, 由A村去B村有2種方法,第二步, 由B村去C村有3種方法,所以 從A村經(jīng) B村去C村共有 2×3 = 6 種不同的方法4.分步計數(shù)原理(乘法原理):做一件事情,完成它需要分成n個步驟,做第一步有種不同的方法,做第二步有種不同的方法,做第n步有種不同的方法,那么完成這件事有 種不同的方法5.原理淺釋分類計數(shù)原理(加法原理)中,“完成一件事,有n類辦法”,是說每種辦法“互斥”,即每種方法都可以獨立地完成這件事,
4、同時他們之間沒有重復(fù)也沒有遺漏進行分類時,要求各類辦法彼此之間是相互排斥的,不論那一類辦法中的哪一種方法,都能獨立完成這件事.只有滿足這個條件,才能直接用加法原理,否則不可以.分步計數(shù)原理(乘法原理)中,“完成一件事,需要分成n個步驟”,是說每個步驟都不足以完成這件事,這些步驟,彼此間也不能有重復(fù)和遺漏如果完成一件事需要分成幾個步驟,各步驟都不可缺少,需要依次完成所有步驟才能完成這件事,而各步要求相互獨立,即相對于前一步的每一種方法,下一步都有m種不同的方法,那么完成這件事的方法數(shù)就可以直接用乘法原理.可以看出“分”是它們共同的特征,但是,分法卻大不相同兩個原理的公式是: , 這種變形還提醒人
5、們,分類和分步,常是在一定的限制之下人為的,因此,在這里我們大有用武之地:可以根據(jù)解題需要靈活而巧妙地分類或分步強調(diào)知識的綜合是近年的一種可取的現(xiàn)象兩個原理,可以與物理中電路的串聯(lián)、并聯(lián)類比兩個基本原理的作用:計算做一件事完成它的所有不同的方法種數(shù)兩個基本原理的區(qū)別:一個與分類有關(guān),一個與分步有關(guān);加法原理是“分類完成”,乘法原理是“分步完成”范例:例1書架的第1層放有4本不同的計算機書,第2層放有3本不同的文藝書,第3層放有2本不同的體育書,(1)從書架上任取1本書,有多少種不同的取法?(2)從書架的第1、2、3層各取1本書,有多少種不同的取法?解:(1)從書架上任取1本書,有3類辦法:第1
6、類辦法是從第1層取1本計算機書,有4種方法;第2類是從第2層取1本文藝書,有3種方法;第3類辦法是從第3層取1本體育書,有2種方法根據(jù)分類計數(shù)原理,不同取法的種數(shù)是4+3+2=9種所以,從書架上任取1本書,有9種不同的取法;(2)從書架的第1、2、3層各取1本書,可以分成3個步驟完成:第1步從第1層取1本計算機書,有4種方法;第2步從第2層取1本藝術(shù)書,有3種方法;第3步從第3層取1本體育書,有2種方法根據(jù)分步計數(shù)原理,從書架的第1、2、3層各取1本書,不同取法的種數(shù)是種所以,從書架的第1、2、3層各取1本書,有24種不同的取法例2一種號碼撥號鎖有4個撥號盤,每個撥號盤上有從0到9共10個數(shù)字
7、,這4個撥號盤可以組成多少個四位數(shù)號碼?解:每個撥號盤上的數(shù)字有10種取法,根據(jù)分步計數(shù)原理,4個撥號盤上各取1個數(shù)字組成的四位數(shù)字號碼的個數(shù)是,所以,可以組成10000個四位數(shù)號碼例3要從甲、乙、丙3名工人中選出2名分別上日班和晚班,有多少種不同的選法?解:從3名工人中選1名上日班和1名上晚班,可以看成是經(jīng)過先選1名上日班,再選1名上晚班兩個步驟完成,先選1名上日班,共有3種選法;上日班的工人選定后,上晚班的工人有2種選法根據(jù)分步技數(shù)原理,不同的選法數(shù)是種,6種選法可以表示如下:日班 晚班甲 乙甲 丙乙 甲乙 丙丙 甲丙 乙所以,從3名工人中選出2名分別上日班和晚班,6種不同的選法例4甲廠生
8、產(chǎn)的收音機外殼形狀有3種,顏色有4種,乙廠生產(chǎn)的收音機外殼形狀有4種,顏色有5種,這兩廠生產(chǎn)的收音機僅從外殼的形狀和顏色看,共有所少種不同的品種?解:收音機的品種可分兩類:第一類:甲廠收音機的種類,分兩步:形狀有3種,顏色有4種,共種;第二類:乙廠收音機的種類,分兩步:形狀有4種,顏色有5種,共種所以,共有個品種說明:分類和分步計數(shù)原理,都是關(guān)于做一件事的不同方法的種數(shù)的問題區(qū)別在于:分類計數(shù)原理針對“分類”問題,其中方法相互獨立,用其中任何一種方法都可以做完這件事;分步計數(shù)原理針對“分步”問題,各個步驟中方法相互獨立,只有各個步驟都完成才算完成了這件事練習: 1 . 書架上層放有6本不同的數(shù)
9、學(xué)書,下層放有5本不同的語文書(1) 從中任取一本,有多少種不同的取法?(2)從中任取數(shù)學(xué)書與語文書各一本,有多少種不同的取法?解:(1)從書架上任取一本書,有兩種方法:第一類可從6本數(shù)學(xué)書中任取一本,有6種方法;第二類可從5本語文書中任取一本,有5種方法;根據(jù)加法原理可得共有 5+6=11 種不同的取法(2) 從書架上任取數(shù)學(xué)、語文書各一本,可以分成兩步完成:第一步任取一本數(shù)學(xué)書,有6種方法;第二步任取一本語文書,有5種方法根據(jù)乘法原理可得共有5×6=30種不同取法2. 某班級有男學(xué)生5人,女學(xué)生4人 (1)從中任選一人去領(lǐng)獎, 有多少種不同的選法? (2) 從中任選男、女學(xué)生各一
10、人去參加座談會,有多少種不同的選法?解:(1) 完成從學(xué)生中任選一人去領(lǐng)獎這件事,共有2類辦法, 第一類辦法,從男學(xué)生中任選一人, 共有 = 5種不同的方法; 第二類辦法,從女學(xué)生中任選一人, 共有 = 4種不同的方法所以, 根據(jù)加法原理, 得到不同選法種數(shù)共有 N = 5 + 4 = 9 種 (2) 完成從學(xué)生中任選男、女各一人去參加座談會這件事, 需分2步完成, 第一步, 選一名男學(xué)生,有 = 5種方法; 第二步, 選一名女學(xué)生,有= 4種方法; 所以,根據(jù)乘法原理, 得到不同選法種數(shù)共有 N = 5 × 4 = 20 種由例1可知: 解題的關(guān)鍵是從總體上看做這件事情是“分類完成
11、” ,還是“分步完成” “分類完成”用“加法原理” ;“分步完成”用“乘法原理”3. 滿足=1,2的集合、共有多少組?分析一:、均是1,2的子集:,1,2,1,2,但不是隨便兩個子集搭配都行,本題尤如含、兩元素的不定方程,其全部解分為四類:1)當=時,只有=1,2,得1組解;2)當=1時,=2或=1,2,得2組解;3)當=2時,=1或=1,2,得2組解;4)當=1,2時,=或1或2或1,2,得4組解.根據(jù)分類計數(shù)原理,共有1+2+2+4=9組解.分析二: 設(shè)、為兩個“口袋”,需將兩種元素(1與2)裝入,任一元素至少裝入一個袋中,分兩步可辦好此事:第1步裝“1”,可裝入不裝入,也可裝入不裝入,還
12、可以既裝入又裝入,有3種裝法;第2步裝2,同樣有3種裝法.根據(jù)分步計數(shù)原理共有3×3=9種裝法,即原題共有9組解.4.從甲地到乙地有2條路可通,從乙地到丙地有3條路可通;從甲地到丁地有4條路可通, 從丁地到丙地有2條路可通從甲地到丙地共有多少種不同的走法? 答案:2×34×2=14 排列 一一、復(fù)習引入: 1分類計數(shù)原理:做一件事情,完成它可以有n類辦法,在第一類辦法中有種不同的方法,在第二類辦法中有種不同的方法,在第n類辦法中有種不同的方法那么完成這件事共有 種不同的方法2.分步計數(shù)原理:做一件事情,完成它需要分成n個步驟,做第一步有種不同的方法,做第二步有種不
13、同的方法,做第n步有種不同的方法,那么完成這件事有 種不同的方法 分類計數(shù)原理和分步計數(shù)原理,回答的都是有關(guān)做一件事的不同方法種數(shù)的問題,區(qū)別在于:分類計數(shù)原理針對的是“分類”問題,其中各種方法相互獨立,每一種方法只屬于某一類,用其中任何一種方法都可以做完這件事;分步計數(shù)原理針對的是“分步”問題,各個步驟中的方法相互依存,某一步驟中的每一種方法都只能做完這件事的一個步驟,只有各個步驟都完成才算做完這件事 應(yīng)用兩種原理解題:1.分清要完成的事情是什么;2.是分類完成還是分步完成,“類”間互相獨立,“步”間互相聯(lián)系;3.有無特殊條件的限制二、講解新課:1問題:問題1從甲、乙、丙3名同學(xué)中選取2名同
14、學(xué)參加某一天的一項活動,其中一名同學(xué)參加上午的活動,一名同學(xué)參加下午的活動,有多少種不同的方法?分析:這個問題就是從甲、乙、丙3名同學(xué)中每次選取2名同學(xué),按照參加上午的活動在前,參加下午活動在后的順序排列,一共有多少種不同的排法的問題,共有6種不同的排法:甲乙 甲丙 乙甲 乙丙 丙甲 丙乙,其中被取的對象叫做元素問題2從這四個字母中,每次取出3個按順序排成一列,共有多少種不同的排法?分析:解決這個問題分三個步驟:第一步先確定左邊的字母,在4個字母中任取1個,有4種方法;第二步確定中間的字母,從余下的3個字母中取,有3種方法;第三步確定右邊的字母,從余下的2個字母中取,有2種方法由分步計數(shù)原理共
15、有:4×3×2=24種不同的方法,用樹型圖排出,并寫出所有的排列由此可寫出所有的排法2排列的概念:從個不同元素中,任?。ǎ﹤€元素(這里的被取元素各不相同)按照一定的順序排成一列,叫做從個不同元素中取出個元素的一個排列說明:(1)排列的定義包括兩個方面:取出元素,按一定的順序排列; (2)兩個排列相同的條件:元素完全相同,元素的排列順序也相同3排列數(shù)的定義:從個不同元素中,任?。ǎ﹤€元素的所有排列的個數(shù)叫做從個元素中取出元素的排列數(shù),用符號表示注意區(qū)別排列和排列數(shù)的不同:“一個排列”是指:從個不同元素中,任取個元素按照一定的順序排成一列,不是數(shù);“排列數(shù)”是指從個不同元素中,
16、任?。ǎ﹤€元素的所有排列的個數(shù),是一個數(shù)所以符號只表示排列數(shù),而不表示具體的排列4排列數(shù)公式及其推導(dǎo):由的意義:假定有排好順序的2個空位,從個元素中任取2個元素去填空,一個空位填一個元素,每一種填法就得到一個排列,反過來,任一個排列總可以由這樣的一種填法得到,因此,所有不同的填法的種數(shù)就是排列數(shù)由分步計數(shù)原理完成上述填空共有種填法,=由此,求可以按依次填3個空位來考慮,=,求以按依次填個空位來考慮,排列數(shù)公式:()說明:(1)公式特征:第一個因數(shù)是,后面每一個因數(shù)比它前面一個少1,最后一個因數(shù)是,共有個因數(shù);排列數(shù)的另一個計算公式:= (2)全排列:當時即個不同元素全部取出的一個排列全排列數(shù):
17、(叫做n的階乘) 三、講解范例:例1計算:(1); (2); (3)解:(1) 3360 ;(2) 720 ;(3)360例2(1)若,則 , (2)若則用排列數(shù)符號表示 解:(1) 17 , 14 (2)若則 例3(1)從這五個數(shù)字中,任取2個數(shù)字組成分數(shù),不同值的分數(shù)共有多少個?(2)5人站成一排照相,共有多少種不同的站法?(3)某年全國足球甲級(A組)聯(lián)賽共有14隊參加,每隊都要與其余各隊在主客場分別比賽1次,共進行多少場比賽?解:(1);(2);(3)排列 二范例:例1(1)有5本不同的書,從中選3本送給3名同學(xué),每人各1本,共有多少種不同的送法?(2)有5種不同的書,要買3本送給3名
18、同學(xué),每人各1本,共有多少種不同的送法?解:(1)從5本不同的書中選出3本分別送給3名同學(xué),對應(yīng)于從5個元素中任取3個元素的一個排列,因此不同送法的種數(shù)是:,所以,共有60種不同的送法(2)由于有5種不同的書,送給每個同學(xué)的1本書都有5種不同的選購方法,因此送給3名同學(xué),每人各1本書的不同方法種數(shù)是:,所以,共有125種不同的送法說明:本題兩小題的區(qū)別在于:第(1)小題是從5本不同的書中選出3本分送給3位同學(xué),各人得到的書不同,屬于求排列數(shù)問題;而第(2)小題中,給每人的書均可以從5種不同的書中任選1種,各人得到那種書相互之間沒有聯(lián)系,要用分步計數(shù)原理進行計算例2某信號兵用紅、黃、藍3面旗從上
19、到下掛在豎直的旗桿上表示信號,每次可以任意掛1面、2面或3面,并且不同的順序表示不同的信號,一共可以表示多少種不同的信號?解:分3類:第一類用1面旗表示的信號有種;第二類用2面旗表示的信號有種;第三類用3面旗表示的信號有種,由分類計數(shù)原理,所求的信號種數(shù)是:,答:一共可以表示15種不同的信號例3將位司機、位售票員分配到四輛不同班次的公共汽車上,每一輛汽車分別有一位司機和一位售票員,共有多少種不同的分配方案?分析:解決這個問題可以分為兩步,第一步:把位司機分配到四輛不同班次的公共汽車上,即從個不同元素中取出個元素排成一列,有種方法;第二步:把位售票員分配到四輛不同班次的公共汽車上,也有種方法,利
20、用分步計數(shù)原理即得分配方案的種數(shù)解:由分步計數(shù)原理,分配方案共有(種)答:共有576種不同的分配方案例4用0到9這10個數(shù)字,可以組成多少個沒有重復(fù)數(shù)字的三位數(shù)?解法1:用分步計數(shù)原理:所求的三位數(shù)的個數(shù)是:解法2:符合條件的三位數(shù)可以分成三類:每一位數(shù)字都不是0的三位數(shù)有個,個位數(shù)字是0的三位數(shù)有個,十位數(shù)字是0的三位數(shù)有個,由分類計數(shù)原理,符合條件的三位數(shù)的個數(shù)是:解法3:從0到9這10個數(shù)字中任取3個數(shù)字的排列數(shù)為,其中以0為排頭的排列數(shù)為,因此符合條件的三位數(shù)的個數(shù)是-說明:解決排列應(yīng)用題,常用的思考方法有直接法和間接法直接法:通過對問題進行恰當?shù)姆诸惡头植?,直接計算符合條件的排列數(shù)如
21、解法1,2;間接法:對于有限制條件的排列應(yīng)用題,可先不考慮限制條件,把所有情況的種數(shù)求出來,然后再減去不符合限制條件的情況種數(shù)如解法3對于有限制條件的排列應(yīng)用題,要恰當?shù)卮_定分類與分步的標準,防止重復(fù)與遺漏例5(1)7位同學(xué)站成一排,共有多少種不同的排法?解:問題可以看作:7個元素的全排列5040(2)7位同學(xué)站成兩排(前3后4),共有多少種不同的排法?解:根據(jù)分步計數(shù)原理:7×6×5×4×3×2×17!5040(3)7位同學(xué)站成一排,其中甲站在中間的位置,共有多少種不同的排法?解:問題可以看作:余下的6個元素的全排列=720(4)7
22、位同學(xué)站成一排,甲、乙只能站在兩端的排法共有多少種?解:根據(jù)分步計數(shù)原理:第一步 甲、乙站在兩端有種;第二步 余下的5名同學(xué)進行全排列有種,所以,共有=240種排列方法(5)7位同學(xué)站成一排,甲、乙不能站在排頭和排尾的排法共有多少種?解法1(直接法):第一步從(除去甲、乙)其余的5位同學(xué)中選2位同學(xué)站在排頭和排尾有種方法;第二步從余下的5位同學(xué)中選5位進行排列(全排列)有種方法,所以一共有2400種排列方法解法2:(排除法)若甲站在排頭有種方法;若乙站在排尾有種方法;若甲站在排頭且乙站在排尾則有種方法,所以,甲不能站在排頭,乙不能排在排尾的排法共有=2400種說明:對于“在”與“不在”的問題,
23、常常使用“直接法”或“排除法”,對某些特殊元素可以優(yōu)先考慮組合1組合的概念:一般地,從個不同元素中取出個元素并成一組,叫做從個不同元素中取出個元素的一個組合說明:不同元素;“只取不排”無序性;相同組合:元素相同2組合數(shù)的概念:從個不同元素中取出個元素的所有組合的個數(shù),叫做從 個不同元素中取出個元素的組合數(shù)用符號表示3組合數(shù)公式:或二、講解新課:1 組合數(shù)的性質(zhì)1:一般地,從n個不同元素中取出個元素后,剩下個元素因為從n個不同元素中取出m個元素的每一個組合,與剩下的n - m個元素的每一個組合一一對應(yīng),所以從n個不同元素中取出m個元素的組合數(shù),等于從這n個元素中取出n - m個元素的組合數(shù),即:
24、在這里,主要體現(xiàn):“取法”與“剩法”是“一一對應(yīng)”的思想證明:又 ,說明:規(guī)定:;等式特點:等式兩邊下標同,上標之和等于下標;此性質(zhì)作用:當時,計算可變?yōu)橛嬎悖軌蚴惯\算簡化.例如=2002; 或2組合數(shù)的性質(zhì)2:+一般地,從這n+1個不同元素中取出m個元素的組合數(shù)是,這些組合可以分為兩類:一類含有元素,一類不含有含有的組合是從這n個元素中取出m -1個元素與組成的,共有個;不含有的組合是從這n個元素中取出m個元素組成的,共有個根據(jù)分類計數(shù)原理,可以得到組合數(shù)的另一個性質(zhì)在這里,主要體現(xiàn)從特殊到一般的歸納思想,“含與不含其元素”的分類思想證明: + 說明:公式特征:下標相同而上標差1的兩個組合
25、數(shù)之和,等于下標比原下標多1而上標與大的相同的一個組合數(shù); 此性質(zhì)的作用:恒等變形,簡化運算 三、講解范例:例1一個口袋內(nèi)裝有大小不同的7個白球和1個黑球,(1)從口袋內(nèi)取出3個球,共有多少種取法?(2)從口袋內(nèi)取出3個球,使其中含有1個黑球,有多少種取法?(3)從口袋內(nèi)取出3個球,使其中不含黑球,有多少種取法?解:(1),或,;(2);(3)例2(1)計算:;(2)求證:+解:(1)原式;證明:(2)右邊左邊例3解方程:(1);(2)解方程:解:(1)由原方程得或,或, 又由得且,原方程的解為或上述求解過程中的不等式組可以不解,直接把和代入檢驗,這樣運算量小得多.(2)原方程可化為,即,解得
26、或, 經(jīng)檢驗:是原方程的解 課 題: 小結(jié)與復(fù)習 一、知識點: 1分類計數(shù)原理:做一件事情,完成它可以有n類辦法,在第一類辦法中有種不同的方法,在第二類辦法中有種不同的方法,在第n類辦法中有種不同的方法那么完成這件事共有 種不同的方法2.分步計數(shù)原理:做一件事情,完成它需要分成n個步驟,做第一步有種不同的方法,做第二步有種不同的方法,做第n步有種不同的方法,那么完成這件事有 種不同的方法 3排列的概念:從個不同元素中,任?。ǎ﹤€元素(這里的被取元素各不相同)按照一定的順序排成一列,叫做從個不同元素中取出個元素的一個排列4排列數(shù)的定義:從個不同元素中,任?。ǎ﹤€元素的所有排列的個數(shù)叫做
27、從個元素中取出元素的排列數(shù),用符號表示5排列數(shù)公式:()6.階乘:表示正整數(shù)1到的連乘積,叫做的階乘規(guī)定7排列數(shù)的另一個計算公式:= 8.組合的概念:一般地,從個不同元素中取出個元素并成一組,叫做從個不同元素中取出個元素的一個組合9組合數(shù)的概念:從個不同元素中取出個元素的所有組合的個數(shù),叫做從 個不同元素中取出個元素的組合數(shù)用符號表示10組合數(shù)公式:或11 組合數(shù)的性質(zhì)1:規(guī)定:; 12組合數(shù)的性質(zhì)2:+ 二、解題思路:解排列組合問題,首先要弄清一件事是“分類”還是“分步”完成,對于元素之間的關(guān)系,還要考慮“是有序”的還是“無序的”,也就是會正確使用分類計數(shù)原理和分步計數(shù)原理、排列定義和組合定
28、義,其次,對一些復(fù)雜的帶有附加條件的問題,需掌握以下幾種常用的解題方法:特殊優(yōu)先法對于存在特殊元素或者特殊位置的排列組合問題,我們可以從這些特殊的東西入手,先解決特殊元素或特殊位置,再去解決其它元素或位置,這種解法叫做特殊優(yōu)先法.例如:用0、1、2、3、4這5個數(shù)字,組成沒有重復(fù)數(shù)字的三位數(shù),其中偶數(shù)共有_個.(答案:30個)科學(xué)分類法對于較復(fù)雜的排列組合問題,由于情況繁多,因此要對各種不同情況,進行科學(xué)分類,以便有條不紊地進行解答,避免重復(fù)或遺漏現(xiàn)象發(fā)生例如:從6臺原裝計算機和5臺組裝計算機中任取5臺,其中至少有原裝與組裝計算機各兩臺,則不同的選取法有_種.(答案:350)插空法解決一些不相
29、鄰問題時,可以先排一些元素然后插入其余元素,使問題得以解決例如:7人站成一行,如果甲乙兩人不相鄰,則不同排法種數(shù)是_.(答案:3600)捆綁法相鄰元素的排列,可以采用“整體到局部”的排法,即將相鄰的元素當成“一個”元素進行排列,然后再局部排列例如:6名同學(xué)坐成一排,其中甲、乙必須坐在一起的不同坐法是_種.(答案:240)排除法從總體中排除不符合條件的方法數(shù),這是一種間接解題的方法.b、排列組合應(yīng)用題往往和代數(shù)、三角、立體幾何、平面解析幾何的某些知識聯(lián)系,從而增加了問題的綜合性,解答這類應(yīng)用題時,要注意使用相關(guān)知識對答案進行取舍.例如:從集合0,1,2,3,5,7,11中任取3個元素分別作為直線
30、方程Ax+By+C=0中的A、B、C,所得的經(jīng)過坐標原點的直線有_條.(答案:30)三、講解范例:例1 由數(shù)字、組成無重復(fù)數(shù)字的七位數(shù)(1)求三個偶數(shù)必相鄰的七位數(shù)的個數(shù);(2)求三個偶數(shù)互不相鄰的七位數(shù)的個數(shù)解 (1):因為三個偶數(shù)、必須相鄰,所以要得到一個符合條件的七位數(shù)可以分為如下三步:第一步將、四個數(shù)字排好有種不同的排法;第二步將、三個數(shù)字“捆綁”在一起有 種不同的“捆綁”方法; 第三步將第二步“捆綁”的這個整體“插入”到第一步所排的四個不同數(shù)字的五個“間隙”(包括兩端的兩個位置)中的其中一個位置上,有種不同的“插入”方法根據(jù)乘法原理共有720種不同的排法所以共有720個符合條件的七位
31、數(shù)解(2):因為三個偶數(shù)、 互不相鄰,所以要得到符合條件的七位數(shù)可以分為如下兩步:第一步將、四個數(shù)字排好,有 種不同的排法;第二步將、分別“插入”到第一步排的四個數(shù)字的五個“間隙”(包括兩端的兩個位置)中的三個位置上,有 種“插入”方法根據(jù)乘法原理共有1440種不同的排法所以共有1440個符合條件的七位數(shù)例 將、分成三組,共有多少種不同的分法?解:要將、分成三組,可以分為三類辦法:()分法、()分法、()分法下面分別計算每一類的方法數(shù):第一類()分法,這是一類整體不等分局部等分的問題,可以采用兩種解法解法一:從六個元素中取出四個不同的元素構(gòu)成一個組,余下的兩個元素各作為一個組,有種不同的分法解
32、法二:從六個元素中先取出一個元素作為一個組有 種選法,再從余下的五個元素中取出一個元素作為一個組有 種選法,最后余下的四個元素自然作為一個組,由于第一步和第二步各選取出一個元素分別作為一個組有先后之分,產(chǎn)生了重復(fù)計算,應(yīng)除以所以共有 15種不同的分組方法 第二類()分法,這是一類整體和局部均不等分的問題,首先從六個不同的元素中選取出一個元素作為一個組有 種不同的選法,再從余下的五個不同元素中選取出兩個不同的元素作為一個組有 種不同的選法,余下的最后三個元素自然作為一個組,根據(jù)乘法原理共有60種不同的分組方法 第三類()分法,這是一類整體“等分”的問題,首先從六個不同元素中選取出兩個不同元素作為
33、一個組有 種不同的取法,再從余下的四個元素中取出兩個不同的元素作為一個組有種不同的取法,最后余下的兩個元素自然作為一個組由于三組等分存在先后選取的不同的順序,所以應(yīng)除以 ,因此共有 15種不同的分組方法 根據(jù)加法原理,將、六個元素分成三組共有:15601590種不同的方法例 一排九個坐位有六個人坐,若每個空位兩邊都坐有人,共有多少種不同的坐法?解:九個坐位六個人坐,空了三個坐位,每個空位兩邊都有人,等價于三個空位互不相鄰,可以看做將六個人先依次坐好有種不同的坐法,再將三個空坐位“插入”到坐好的六個人之間的五個“間隙”(不包括兩端)之中的三個不同的位置上有種不同的“插入”方法根據(jù)乘法原理共有 7
34、200種不同的坐法小結(jié) :個不同的元素必須相鄰,有 種“捆綁”方法個不同元素互不相鄰,分別“插入”到個“間隙”中的個位置有 種不同的“插入”方法個相同的元素互不相鄰,分別“插入”到個“間隙”中的個位置,有 種不同的“插入”方法若干個不同的元素“等分”為 個組,要將選取出每一個組的組合數(shù)的乘積除以 排列組合問題的解題策略一、相臨問題捆綁法例17名學(xué)生站成一排,甲、乙必須站在一起有多少不同排法?解:兩個元素排在一起的問題可用“捆綁”法解決,先將甲乙二人看作一個元素與其他五人進行排列,并考慮甲乙二人的順序,所以共有 種。評注:一般地: 個人站成一排,其中某 個人相鄰,可用“捆綁”法解決,共有 種排法
35、。二、不相臨問題選空插入法例2 7名學(xué)生站成一排,甲乙互不相鄰有多少不同排法?解:甲、乙二人不相鄰的排法一般應(yīng)用“插空”法,所以甲、乙二人不相鄰的排法總數(shù)應(yīng)為: 種 .評注:若 個人站成一排,其中 個人不相鄰,可用“插空”法解決,共有 種排法。三、復(fù)雜問題總體排除法在直接法考慮比較難,或分類不清或多種時,可考慮用“排除法”,解決幾何問題必須注意幾何圖形本身對其構(gòu)成元素的限制。例3.(1996年全國高考題)正六邊形的中心和頂點共7個點,以其中3個點為頂點的三角形共有多少個.解:從7個點中取3個點的取法有 種,但其中正六邊形的對角線所含的中心和頂點三點共線不能組成三角形,有3條,所以滿足條件的三角
36、形共有 332個.四、特殊元素優(yōu)先考慮法 對于含有限定條件的排列組合應(yīng)用題,可以考慮優(yōu)先安排特殊位置,然后再考慮其他位置的安排。 例4 (1995年上海高考題) 1名老師和4名獲獎學(xué)生排成一排照像留念,若老師不排在兩端,則共有不同的排法 種解:先考慮特殊元素(老師)的排法,因老師不排在兩端,故可在中間三個位置上任選一個位置,有 種,而其余學(xué)生的排法有 種,所以共有 72種不同的排法.例5(2000年全國高考題)乒乓球隊的10名隊員中有3名主力隊員,派5名隊員參加比賽,3名主力隊員要安排在第一、三、五位置,其余7名隊員選2名安排在第二、四位置,那么不同的出場安排共有 種.解:由于第一、三、五位置
37、特殊,只能安排主力隊員,有 種排法,而其余7名隊員選出2名安排在第二、四位置,有 種排法,所以不同的出場安排共有 252種.五、多元問題分類討論法對于元素多,選取情況多,可按要求進行分類討論,最后總計。例6(2003年北京春招)某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目.如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為(A ) A42 B30 C20 D12解:增加的兩個新節(jié)目,可分為相臨與不相臨兩種情況:1.不相臨:共有A62種;2.相臨:共有A22A61種。故不同插法的種數(shù)為:A62 +A22A61=42 ,故選A。例7(2003年全國高考試題)如圖, 一個地區(qū)
38、分為5個行政區(qū)域,現(xiàn)給地圖著色,要求相鄰地區(qū)不得使用同一顏色,現(xiàn)有4種顏色可供選擇,則不同的著色方法共有多少種?(以數(shù)字作答)解:區(qū)域1與其他四個區(qū)域相鄰,而其他每個區(qū)域都與三個區(qū)域相鄰,因此,可以涂三種或四種顏色 用三種顏色著色有 =24種方法, 用四種顏色著色有 =48種方法,從而共有24+48=72種方法,應(yīng)填72.六、混合問題先選后排法對于排列組合的混合應(yīng)用題,可采取先選取元素,后進行排列的策略 例8(2002年北京高考)12名同學(xué)分別到三個不同的路口進行車流量的調(diào)查,若每個路口4人,則不同的分配方案共有( ) A 種 B 種 C 種 D 種解:本試題屬于均分組問題。 則12名同學(xué)均分
39、成3組共有 種方法,分配到三個不同的路口的不同的分配方案共有: 種,故選A。例9(2003年北京高考試題)從黃瓜、白菜、油菜、扁豆4種蔬菜品種中選出3種,分別種在不同土質(zhì)的三塊土地上,其中黃瓜必須種植,不同的種植方法共有( ) A24種 B18種 C12種 D6種 解:先選后排,分步實施. 由題意,不同的選法有: C32種,不同的排法有: A31·A22,故不同的種植方法共有A31·C32·A22=12,故應(yīng)選C. 七相同元素分配檔板分隔法例10把10本相同的書發(fā)給編號為1、2、3的三個學(xué)生閱覽室,每個閱覽室分得的書的本數(shù)不小于其編號數(shù),試求不同分法的種數(shù)。請用盡
40、可能多的方法求解,并思考這些方法是否適合更一般的情況?本題考查組合問題。解:先讓2、3號閱覽室依次分得1本書、2本書;再對余下的7本書進行分配,保證每個閱覽室至少得一本書,這相當于在7本相同書之間的6個“空檔”內(nèi)插入兩個相同“I”(一般可視為“隔板”)共有 種插法,即有15種分法??傊?,排列、組合應(yīng)用題的解題思路可總結(jié)為:排組分清,加乘明確;有序排列,無序組合;分類為加,分步為乘。具體說,解排列組合的應(yīng)用題,通常有以下途徑:(1)以元素為主體,即先滿足特殊元素的要求,再考慮其他元素。(2)以位置為主體,即先滿足特殊位置的要求,再考慮其他位置。(3)先不考慮附加條件,計算出排列或組合數(shù),再減去不
41、合要求的排列組合數(shù)。排列組合問題的解題方略湖北省安陸市第二高級中學(xué) 張征洪排列組合知識,廣泛應(yīng)用于實際,掌握好排列組合知識,能幫助我們在生產(chǎn)生活中,解決許多實際應(yīng)用問題。同時排列組合問題歷來就是一個老大難的問題。因此有必要對排列組合問題的解題規(guī)律和解題方法作一點歸納和總結(jié),以期充分掌握排列組合知識。首先,談?wù)勁帕薪M合綜合問題的一般解題規(guī)律:1)使用“分類計數(shù)原理”還是“分步計數(shù)原理”要根據(jù)我們完成某件事時采取的方式而定,可以分類來完成這件事時用“分類計數(shù)原理”,需要分步來完成這件事時就用“分步計數(shù)原理”;那么,怎樣確定是分類,還是分步驟?“分類”表現(xiàn)為其中任何一類均可獨立完成所給的事件,而“分
42、步”必須把各步驟均完成才能完成所給事件,所以準確理解兩個原理強調(diào)完成一件事情的幾類辦法互不干擾,相互獨立,彼此間交集為空集,并集為全集,不論哪類辦法都能將事情單獨完成,分步計數(shù)原理強調(diào)各步驟缺一不可,需要依次完成所有步驟才能完成這件事,步與步之間互不影響,即前步用什么方法不影響后面的步驟采用的方法。 2)排列與組合定義相近,它們的區(qū)別在于是否與順序有關(guān)。3)復(fù)雜的排列問題常常通過試驗、畫 “樹圖 ”、“框圖”等手段使問題直觀化,從而尋求解題途徑,由于結(jié)果的正確性難于檢驗,因此常常需要用不同的方法求解來獲得檢驗。4)按元素的性質(zhì)進行分類,按事件發(fā)生的連續(xù)性進行分步是處理排列組合問題的基本思想方法
43、,要注意“至少、至多”等限制詞的意義。5)處理排列、組合綜合問題,一般思想是先選元素(組合),后排列,按元素的性質(zhì)進行“分類”和按事件的過程“分步”,始終是處理排列、組合問題的基本原理和方法,通過解題訓(xùn)練要注意積累和掌握分類和分步的基本技能,保證每步獨立,達到分類標準明確,分步層次清楚,不重不漏。6)在解決排列組合綜合問題時,必須深刻理解排列組合的概念,能熟練地對問題進行分類,牢記排列數(shù)與組合數(shù)公式與組合數(shù)性質(zhì),容易產(chǎn)生的錯誤是重復(fù)和遺漏計數(shù)??傊鉀Q排列組合問題的基本規(guī)律,即:分類相加,分步相乘,排組分清,加乘明確;有序排列,無序組合;正難則反,間接排除等。其次,我們在抓住問題的本質(zhì)特征和
44、規(guī)律,靈活運用基本原理和公式進行分析解答的同時,還要注意講究一些解題策略和方法技巧,使一些看似復(fù)雜的問題迎刃而解。下面介紹幾種常用的解題方法和策略。一特殊元素(位置)的“優(yōu)先安排法”:對于特殊元素(位置)的排列組合問題,一般先考慮特殊,再考慮其他。例1、 用0,2,3,4,5,五個數(shù)字,組成沒有重復(fù)數(shù)字的三位數(shù),其中偶數(shù)共有( )。 A 24個 B.30個 C.40個 D.60個 分析由于該三位數(shù)為偶數(shù),故末尾數(shù)字必為偶數(shù),又因為0不能排首位,故0就是其中的“特殊”元素,應(yīng)該優(yōu)先安排,按0排在末尾和0不排在末尾分兩類:1)0排末尾時,有A42個,2)0不排在末尾時,則有C21 A31A31個,
45、由分數(shù)計數(shù)原理,共有偶數(shù)A42 + C21 A31A31=30個,選B。二總體淘汰法:對于含否定的問題,還可以從總體中把不合要求的除去。如例1中,也可用此法解答:五個數(shù)字組成三位數(shù)的全排列有A53個,排好后發(fā)現(xiàn)0不能排首位,而且數(shù)字3,5也不能排末位,這兩種排法要排除,故有A53-3A42+ C21A31=30個偶數(shù)。三合理分類與準確分步含有約束條件的排列組合問題,按元素的性質(zhì)進行分類,按事情發(fā)生的連續(xù)過程分步,做到分類標準明確,分步層次清楚,不重不漏。四相鄰問題用捆綁法:在解決對于某幾個元素要求相鄰的問題時,先整體考慮,將相鄰的元素“捆綁”起來,看作一“大”元素與其余元素排列,然后再考慮大元
46、素內(nèi)部各元素間順序的解題策略就是捆綁法例2、有8本不同的書;其中數(shù)學(xué)書3本,外語書2本,其它學(xué)科書3本若將這些書排成一列放在書架上,讓數(shù)學(xué)書排在一起,外語書也恰好排在一起的排法共有( )種(結(jié)果用數(shù)值表示)解:把3本數(shù)學(xué)書“捆綁”在一起看成一本大書,2本外語書也“捆綁”在一起看成一本大書,與其它3本書一起看作5個元素,共有A55種排法;又3本數(shù)學(xué)書有A33種排法,2本外語書有A22種排法;根據(jù)分步計數(shù)原理共有排法A55 A33 A22=1440(種).注:運用捆綁法解決排列組合問題時,一定要注意“捆綁”起來的大元素內(nèi)部的順序問題五不相鄰問題用“插空法”:不相鄰問題是指要求某些元素不能相鄰,由其
47、它元素將它們隔開解決此類問題可以先將其它元素排好,再將所指定的不相鄰的元素插入到它們的間隙及兩端位置,故稱插空法例3、用1、2、3、4、5、6、7、8組成沒有重復(fù)數(shù)字的八位數(shù),要求1與2相鄰,2與4相鄰,5與6相鄰,而7與8不相鄰。這樣的八位數(shù)共有( )個(用數(shù)字作答)解:由于要求1與2相鄰,2與4相鄰,可將1、2、4這三個數(shù)字捆綁在一起形成一個大元素,這個大元素的內(nèi)部中間只能排2,兩邊排1和4,因此大元素內(nèi)部共有A22種排法,再把5與6也捆綁成一個大元素,其內(nèi)部也有A22種排法,與數(shù)字3共計三個元素,先將這三個元素排好,共有A33種排法,再從前面排好的三個元素形成的間隙及兩端共四個位置中任選
48、兩個,把要求不相鄰的數(shù)字7和8插入即可,共有A42種插法,所以符合條件的八位數(shù)共有A22 A22 A33 A42288(種)注:運用“插空法”解決不相鄰問題時,要注意欲插入的位置是否包含兩端位置六順序固定用“除法”:對于某幾個元素按一定的順序排列問題,可先把這幾個元素與其他元素一同進行全排列,然后用總的排列數(shù)除于這幾個元素的全排列數(shù)。例4、6個人排隊,甲、乙、丙三人按“甲-乙-丙”順序排的排隊方法有多少種?分析:不考慮附加條件,排隊方法有A66種,而其中甲、乙、丙的A33種排法中只有一種符合條件。故符合條件的排法有A66 ÷A33 =120種。(或A63種)例5、4個男生和3個女生,
49、高矮不相等,現(xiàn)在將他們排成一行,要求從左到右女生從矮到高排列,有多少種排法。解:先在7個位置中任取4個給男生,有A74 種排法,余下的3個位置給女生,只有一種排法,故有A74 種排法。(也可以是A77 ÷A33種)七分排問題用“直排法”:把幾個元素排成若干排的問題,可采用統(tǒng)一排成一排的排法來處理。例6、7個人坐兩排座位,第一排3個人,第二排坐4個人,則不同的坐法有多少種?分析:7個人可以在前兩排隨意就坐,再無其它條件,故兩排可看作一排來處理,不同的坐法共有A77種。八逐個試驗法:題中附加條件增多,直接解決困難時,用試驗逐步尋找規(guī)律。例7.將數(shù)字1,2,3,4填入標號為1,2,3,4的
50、方格中,每方格填1個,方格標號與所填數(shù)字均不相同的填法種數(shù)有( )A6 B.9 C.11 D.23解:第一方格內(nèi)可填2或3或4,如第一填2,則第二方格可填1或3或4,若第二方格內(nèi)填1,則后兩方格只有一種方法;若第二方格填3或4,后兩方格也只有一種填法。一共有9種填法,故選B九、構(gòu)造模型 “隔板法”對于較復(fù)雜的排列問題,可通過設(shè)計另一情景,構(gòu)造一個隔板模型來解決問題。例8、方程a+b+c+d=12有多少組正整數(shù)解?分析:建立隔板模型:將12個完全相同的球排成一列,在它們之間形成的11個間隙中任意插入3塊隔板,把球分成4堆,每一種分法所得4堆球的各堆球的數(shù)目,對應(yīng)為a、b、c、d的一組正整解,故原
51、方程的正整數(shù)解的組數(shù)共有C113 .又如方程a+b+c+d=12非負整數(shù)解的個數(shù),可用此法解。十.正難則反排除法對于含“至多”或“至少”的排列組合問題,若直接解答多需進行復(fù)雜討論,可以考慮“總體去雜”,即將總體中不符合條件的排列或組合刪除掉,從而計算出符合條件的排列組合數(shù)的方法例9、從4臺甲型和5臺乙型電視機中任意取出3臺,其中至少要甲型與乙型電視機各一臺,則不同的取法共有( )種 A140種 B80種 C70種 D35種解:在被取出的3臺中,不含甲型或不合乙型的抽取方法均不合題意,因此符合題意的抽取方法有C93-C43-C53=70(種),故選C注:這種方法適用于反面的情況明確且易于計算的習
52、題十一逐步探索法:對于情況復(fù)雜,不易發(fā)現(xiàn)其規(guī)律的問題需要認真分析,探索出其規(guī)律例10、從1到100的自然數(shù)中,每次取出不同的兩個數(shù),使它們的和大于100,則不同的取法種數(shù)有多少種。解:兩個數(shù)相加中以較小的數(shù)為被加數(shù),1+100>100,1為被加數(shù)時有1種,2為被加數(shù)有2種,49為被加數(shù)的有49種,50為被加數(shù)的有50種,但51為被加數(shù)有49種,52為被加數(shù)有48種,99為被捕加數(shù)的只有1種,故不同的取法有(1+2+3+50)+(49+48+1)=2500種十二一一對應(yīng)法:例11.在100名選手之間進行單循環(huán)淘汰賽(即一場失敗要退出比賽)最后產(chǎn)生一名冠軍,要比賽幾場?解:要產(chǎn)生一名冠軍,要
53、淘汰冠軍以外的所有選手,即要淘汰99名選手,要淘汰一名就要進行一場,故比賽99場。16個人分乘兩輛不同的汽車,每輛車最多坐4人,則不同的乘車方法數(shù)為()A40 B50 C60 D70 解析先分組再排列,一組2人一組4人有C15種不同的分法;兩組各3人共有10種不同的分法,所以乘車方法數(shù)為25×250,故選B.2有6個座位連成一排,現(xiàn)有3人就坐,則恰有兩個空座位相鄰的不同坐法有()A36種 B48種 C72種 D96種 解析恰有兩個空座位相鄰,相當于兩個空位與第三個空位不相鄰,先排三個人,然后插空,從而共AA72種排法,故選C.3只用1,2,3三個數(shù)字組成一個四位數(shù),規(guī)定這三個數(shù)必須同時使用,且同一數(shù)字不能相鄰出現(xiàn),這樣的四位數(shù)有()A6個 B9個 C18個 D36個 解析注意題中條件的要求,一是三個數(shù)字必須全部使用,二是相同的數(shù)字不能相鄰,選四個數(shù)字共有C3(種)選法,即1231,1232,1233,而每種選擇有A×C6(種)排法,所以共有3×618(種)情況,即這樣的四位數(shù)有18個4男女學(xué)生共有8人,從男生中選取2人,從女生中選取1人,共有30種不同的選法,其中女生有()A2人或3人 B3人或4人 C3人 D4人 解析設(shè)男生有n人,則女生有(8n)人,由題意可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 資金預(yù)算考試題及答案
- 合作協(xié)議書合同
- 餐廳轉(zhuǎn)讓合同協(xié)議書
- 2025年農(nóng)業(yè)灌溉用水高效利用技術(shù)與管理的節(jié)水灌溉技術(shù)政策分析報告
- 合伙人合同協(xié)議書的利弊
- 變更租房合同協(xié)議書
- 意向協(xié)議書與合同
- 物料提供協(xié)議書
- 昌河合作協(xié)議書
- 木門驗收協(xié)議書
- 通信機房氣體滅火系統(tǒng)解決方案(機房消防工程)
- 建構(gòu)主義理論課件
- 超星爾雅學(xué)習通《帶您走進西藏》章節(jié)測試答案
- 施工監(jiān)理投標報價單
- 陽江海上風電項目建議書
- 大學(xué)本科畢業(yè)設(shè)計畢業(yè)論文-網(wǎng)上藥店管理系統(tǒng)的設(shè)計與實現(xiàn)
- DBJ∕T 13-264-2017 福建省石砌體結(jié)構(gòu)加固技術(shù)規(guī)程
- ISO22000和ISO9001食品質(zhì)量安全管理體系文件管理手冊及程序文件合集(2020年版)
- T∕CGMA 081001-2018 整體式高速齒輪傳動裝置通用技術(shù)規(guī)范
- 湘少版級英語單詞表吐血整理
- 配電房值班電工技能考核(答案)
評論
0/150
提交評論