




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、高考數(shù)學(xué)必勝秘訣在哪?概念、方法、題型、易誤點(diǎn)及應(yīng)試技巧總結(jié)五、平面向量1、向量有關(guān)概念:(1)向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來表示,注意不能說向量就是有向線段,為什么?(向量可以平移)。如已知A(1,2),B(4,2),則把向量按向量(1,3)平移后得到的向量是_(答:(3,0)(2)零向量:長度為0的向量叫零向量,記作:,注意零向量的方向是任意的;(3)單位向量:長度為一個單位長度的向量叫做單位向量(與共線的單位向量是);(4)相等向量:長度相等且方向相同的兩個向量叫相等向量,相等向量有傳遞性;(5)平行向量(也叫共線向量):方向相同或相反的非零向
2、量、叫做平行向量,記作:,規(guī)定零向量和任何向量平行。提醒:相等向量一定是共線向量,但共線向量不一定相等;兩個向量平行與與兩條直線平行是不同的兩個概念:兩個向量平行包含兩個向量共線, 但兩條直線平行不包含兩條直線重合;平行向量無傳遞性?。ㄒ?yàn)橛?;三點(diǎn)共線共線;(6)相反向量:長度相等方向相反的向量叫做相反向量。的相反向量是。如下列命題:(1)若,則。(2)兩個向量相等的充要條件是它們的起點(diǎn)相同,終點(diǎn)相同。(3)若,則是平行四邊形。(4)若是平行四邊形,則。(5)若,則。(6)若,則。其中正確的是_(答:(4)(5)2、向量的表示方法:(1)幾何表示法:用帶箭頭的有向線段表示,如,注意起點(diǎn)在前,
3、終點(diǎn)在后;(2)符號表示法:用一個小寫的英文字母來表示,如,等;(3)坐標(biāo)表示法:在平面內(nèi)建立直角坐標(biāo)系,以與軸、軸方向相同的兩個單位向量,為基底,則平面內(nèi)的任一向量可表示為,稱為向量的坐標(biāo),叫做向量的坐標(biāo)表示。如果向量的起點(diǎn)在原點(diǎn),那么向量的坐標(biāo)與向量的終點(diǎn)坐標(biāo)相同。3.平面向量的基本定理:如果e1和e2是同一平面內(nèi)的兩個不共線向量,那么對該平面內(nèi)的任一向量a,有且只有一對實(shí)數(shù)、,使a=e1e2。如(1)若,則_(答:);(2)下列向量組中,能作為平面內(nèi)所有向量基底的是 A. B. C. D. (答:B);(3)已知分別是的邊上的中線,且,則可用向量表示為_(答:);(4)已知中,點(diǎn)在邊上,
4、且,則的值是_(答:0)4、實(shí)數(shù)與向量的積:實(shí)數(shù)與向量的積是一個向量,記作,它的長度和方向規(guī)定如下:當(dāng)>0時,的方向與的方向相同,當(dāng)<0時,的方向與的方向相反,當(dāng)0時,注意:0。5、平面向量的數(shù)量積:(1)兩個向量的夾角:對于非零向量,作,稱為向量,的夾角,當(dāng)0時,同向,當(dāng)時,反向,當(dāng)時,垂直。(2)平面向量的數(shù)量積:如果兩個非零向量,它們的夾角為,我們把數(shù)量叫做與的數(shù)量積(或內(nèi)積或點(diǎn)積),記作:,即。規(guī)定:零向量與任一向量的數(shù)量積是0,注意數(shù)量積是一個實(shí)數(shù),不再是一個向量。如(1)ABC中,則_(答:9);(2)已知,與的夾角為,則等于_(答:1);(3)已知,則等于_(答:);
5、(4)已知是兩個非零向量,且,則的夾角為_(答:)(3)在上的投影為,它是一個實(shí)數(shù),但不一定大于0。如已知,且,則向量在向量上的投影為_(答:)(4)的幾何意義:數(shù)量積等于的模與在上的投影的積。(5)向量數(shù)量積的性質(zhì):設(shè)兩個非零向量,其夾角為,則:;當(dāng),同向時,特別地,;當(dāng)與反向時,;當(dāng)為銳角時,0,且不同向,是為銳角的必要非充分條件;當(dāng)為鈍角時,0,且不反向,是為鈍角的必要非充分條件;非零向量,夾角的計(jì)算公式:;。如(1)已知,如果與的夾角為銳角,則的取值范圍是_(答:或且);(2)已知的面積為,且,若,則夾角的取值范圍是_(答:);(3)已知與之間有關(guān)系式,用表示;求的最小值,并求此時與的
6、夾角的大?。ù穑?;最小值為,)6、向量的運(yùn)算:(1)幾何運(yùn)算:向量加法:利用“平行四邊形法則”進(jìn)行,但“平行四邊形法則”只適用于不共線的向量,如此之外,向量加法還可利用“三角形法則”:設(shè),那么向量叫做與的和,即;向量的減法:用“三角形法則”:設(shè),由減向量的終點(diǎn)指向被減向量的終點(diǎn)。注意:此處減向量與被減向量的起點(diǎn)相同。如(1)化簡:_;_;_(答:;);(2)若正方形的邊長為1,則_(答:);(3)若O是所在平面內(nèi)一點(diǎn),且滿足,則的形狀為_(答:直角三角形);(4)若為的邊的中點(diǎn),所在平面內(nèi)有一點(diǎn),滿足,設(shè),則的值為_(答:2);(5)若點(diǎn)是的外心,且,則的內(nèi)角為_(答:);(2)坐標(biāo)運(yùn)算:設(shè),
7、則:向量的加減法運(yùn)算:,。如(1)已知點(diǎn),若,則當(dāng)_時,點(diǎn)P在第一、三象限的角平分線上(答:);(2)已知,則 (答:或);(3)已知作用在點(diǎn)的三個力,則合力的終點(diǎn)坐標(biāo)是 (答:(9,1)實(shí)數(shù)與向量的積:。若,則,即一個向量的坐標(biāo)等于表示這個向量的有向線段的終點(diǎn)坐標(biāo)減去起點(diǎn)坐標(biāo)。如設(shè),且,則C、D的坐標(biāo)分別是_(答:);平面向量數(shù)量積:。如已知向量(sinx,cosx), (sinx,sinx), (1,0)。(1)若x,求向量、的夾角;(2)若x,函數(shù)的最大值為,求的值(答:或);向量的模:。如已知均為單位向量,它們的夾角為,那么_(答:); 兩點(diǎn)間的距離:若,則。如如圖,在平面斜坐標(biāo)系中,
8、平面上任一點(diǎn)P關(guān)于斜坐標(biāo)系的斜坐標(biāo)是這樣定義的:若,其中分別為與x軸、y軸同方向的單位向量,則P點(diǎn)斜坐標(biāo)為。(1)若點(diǎn)P的斜坐標(biāo)為(2,2),求P到O的距離PO;(2)求以O(shè)為圓心,1為半徑的圓在斜坐標(biāo)系中的方程。(答:(1)2;(2);7、向量的運(yùn)算律:(1)交換律:,;(2)結(jié)合律:,;(3)分配律:,。如下列命題中: ; ; ; 若,則或;若則;。其中正確的是_(答:)提醒:(1)向量運(yùn)算和實(shí)數(shù)運(yùn)算有類似的地方也有區(qū)別:對于一個向量等式,可以移項(xiàng),兩邊平方、兩邊同乘以一個實(shí)數(shù),兩邊同時取模,兩邊同乘以一個向量,但不能兩邊同除以一個向量,即兩邊不能約去一個向量,切記兩向量不能相除(相約);
9、(2)向量的“乘法”不滿足結(jié)合律,即,為什么?8、向量平行(共線)的充要條件:0。如(1)若向量,當(dāng)_時與共線且方向相同(答:2);(2)已知,且,則x_(答:4);(3)設(shè),則k_時,A,B,C共線(答:2或11)9、向量垂直的充要條件: .特別地。如(1)已知,若,則 (答:);(2)以原點(diǎn)O和A(4,2)為兩個頂點(diǎn)作等腰直角三角形OAB,則點(diǎn)B的坐標(biāo)是_ (答:(1,3)或(3,1);(3)已知向量,且,則的坐標(biāo)是_ (答:)10.線段的定比分點(diǎn):(1)定比分點(diǎn)的概念:設(shè)點(diǎn)P是直線PP上異于P、P的任意一點(diǎn),若存在一個實(shí)數(shù) ,使,則叫做點(diǎn)P分有向線段所成的比,P點(diǎn)叫做有向線段的以定比為的
10、定比分點(diǎn);(2)的符號與分點(diǎn)P的位置之間的關(guān)系:當(dāng)P點(diǎn)在線段 PP上時>0;當(dāng)P點(diǎn)在線段 PP的延長線上時<1;當(dāng)P點(diǎn)在線段PP的延長線上時;若點(diǎn)P分有向線段所成的比為,則點(diǎn)P分有向線段所成的比為。如若點(diǎn)分所成的比為,則分所成的比為_(答:)(3)線段的定比分點(diǎn)公式:設(shè)、,分有向線段所成的比為,則,特別地,當(dāng)1時,就得到線段PP的中點(diǎn)公式。在使用定比分點(diǎn)的坐標(biāo)公式時,應(yīng)明確,、的意義,即分別為分點(diǎn),起點(diǎn),終點(diǎn)的坐標(biāo)。在具體計(jì)算時應(yīng)根據(jù)題設(shè)條件,靈活地確定起點(diǎn),分點(diǎn)和終點(diǎn),并根據(jù)這些點(diǎn)確定對應(yīng)的定比。如(1)若M(-3,-2),N(6,-1),且,則點(diǎn)P的坐標(biāo)為_(答:);(2)已知,直線與線段交于,且,則等于_(答:或)11.平移公式:如果點(diǎn)按向量平移至,則;曲線按向量平移得曲線.注意:(1)函數(shù)按向量平移與平?!白蠹佑覝p”有何聯(lián)系?(2)向量平移具有坐標(biāo)不變性,可別忘了啊!如(1)按向量把平移到,則按向量把點(diǎn)平移到點(diǎn)_(答:(,);(2)函數(shù)的圖象按向量平移后,所得函數(shù)的解析式是,則_(答:)12、向量中一些常用的結(jié)論:(1)一個封閉圖形首尾連接而成的向量和為零向量,要注意運(yùn)用;(2),特別地,當(dāng)同向或有;當(dāng)反向或有;當(dāng)不共線(這些和實(shí)數(shù)比較類似).(3)在中,若,則其重心的坐標(biāo)為。如若ABC的三邊的中點(diǎn)分別為(2,1)、(-3,4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公寓安裝櫥柜合同范本
- 勞務(wù)合同范本版一
- 出租土地建設(shè)合同范本
- 加盟合同范本找
- 勞務(wù)外包個人合同范本
- 個人購買商鋪合同范本
- 代辦合同范本寫
- 凱迪拉克訂購合同范本
- 2025年羧甲淀粉鈉合作協(xié)議書
- 前期招商策劃合同范本
- 家校共育之道
- 公司EHS知識競賽題庫附答案
- DeepSeek入門寶典培訓(xùn)課件
- 社區(qū)健康促進(jìn)工作計(jì)劃
- 《作文中間技巧》課件
- 2025年度移動端SEO服務(wù)及用戶體驗(yàn)優(yōu)化合同
- 中小學(xué)《清明節(jié)活動方案》班會課件
- 廣東省2025年中考物理仿真模擬卷(深圳)附答案
- 新蘇教版一年級下冊數(shù)學(xué)第1單元第3課時《8、7加幾》作業(yè)
- 2024年山東電力高等??茖W(xué)校高職單招職業(yè)技能測驗(yàn)歷年參考題庫(頻考版)含答案解析
- 特殊教育學(xué)校2024-2025學(xué)年度第二學(xué)期教學(xué)工作計(jì)劃
評論
0/150
提交評論