




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、The research of digital image processing technique 1 IntroductionInterest in digital image processing methods stems from two principal application areas: improvement of pictorial information for human interpretation; and processing of image data for storage, transmission, and representation for auto
2、nomous machine perception. This chapter has several objectives: (1)to define the scope of the field that we call image processing; (2)to give a historical perspective of the origins of this field; (3)to give an idea of the state of the art in image processing by examining some of the principal area
3、in which it is applied; (4)to discuss briefly the principal approaches used in digital image processing; (5)to give an overview of the components contained in a typical, general-purpose image processing system; and (6) to provide direction to the books and other literature where image processing wor
4、k normally is reporter.1.1 What Is Digital Image Processing?An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the intensity or gray level of the image at that point. When x
5、, y, and digital image. The field of digital image processing refers to processing digital images by means of a digital computer. Note that a digital image is composed of a finite number of elements, each of which has a particular location and value. These elements are referred to as picture element
6、s, image elements, pels, and pixels. Pixel is the term most widely used to denote the elements of a digital image. We consider these definitions in more formal terms in Chapter2. Vision is the most advanced of our senses, so it is not surprising that images play the single most important role in hum
7、an perception. However, unlike human who are limited to the visual band of the electromagnetic (EM) spectrum, imaging machines cover almost the entire EM spectrum, ranging from gamma to radio waves. They can operate on images generated by sources that human are not accustomed to associating with ima
8、ge. These include ultrasound, electron microscopy, and computer-generated images. Thus, digital image processing encompasses a wide and varied field of application. There is no general agreement among authors regarding where image processing stops and other related areas, such as image analysis and
9、computer vision, start. Sometimes a distinction is made by defining image processing as a discipline in which both the input and output of a process are images. We believe this to be a limiting and somewhat artificial boundary. For example, under this definition, even the trivial task of computing t
10、he average intensity of an image (which yields a single number) would not be considered an image processing operation. On the other hand, there are fields such as computer vision whose ultimate goal is to use computer to emulate human vision, including learning and being able to make inferences and
11、take actions based on visual inputs. This area itself is a branch of artificial intelligence (AI) whose objective is to emulate human intelligence. This field of AI is in its earliest stages of infancy in terms of development, with progress having been much slower than originally anticipated. The ar
12、ea of image analysis (also called image understanding) is in between image processing and computer vision. There are no clear-cut boundaries in the continuum from image processing at one end to computer vision at the other. However , one useful paradigm is to consider three types of computerized pro
13、cesses is this continuum: low-, mid-, and high-ever processes. Low-level processes involve primitive operation such as image preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-level process is characterized by the fact that both its input and output are images. Mid-leve
14、l processing on images involves tasks such as segmentation (partitioning an image into regions or objects), description of those objects to reduce them to a form suitable for computer processing, and classification (recognition) of individual object. Amid-level process is characterized by the fact t
15、hat its inputs generally are images, but its output is attributes extracted from those images (e. g., edges contours, and the identity of individual object). Finally, higher-level processing involves “making sense” of an ensemble of recognized objects, as in image analysis, and, at the far end of th
16、e continuum, performing the cognitive function normally associated with vision. Based on the preceding comments, we see that a logical place of overlap between image processing and image analysis is the area of recognition of individual regions or objects in an image. Thus, what we call in this book
17、 digital image processing encompasses processes whose inputs and outputs are images and, in addition, encompasses processes that extract attributes from images, up to and including the recognition of individual objects. As a simple illustration to clarify these concepts, consider the area of automat
18、ed analysis of text. The processes of acquiring an image of the area containing the text. Preprocessing that images, extracting (segmenting) the individual characters, describing the characters in a form suitable for computer processing, and recognizing those individual characters are in the scope o
19、f what we call digital image processing in this book. Making sense of the content of the page may be viewed as being in the domain of image analysis and even computer vision, depending on the level of complexity implied by the statement “making cense.” As will become evident shortly, digital image p
20、rocessing, as we have defined it, is used successfully in a broad rang of areas of exceptional social and economic value. The concepts developed in the following chapters are the foundation for the methods used in those application areas.1.2 The Origins of Digital Image Processing One of the first a
21、pplications of digital images was in the newspaper industry, when pictures were first sent by submarine cable between London and NewYork. Introduction of the Bartlane cable picture transmission system in the early 1920s reduced the time required to transport a picture across the Atlantic from more t
22、han a week to less than three hours. Specialized printing equipment coded pictures for cable transmission and then reconstructed them at the receiving end. Figure 1.1 was transmitted in this way and reproduced on a telegraph printer fitted with typefaces simulating a halftone pattern. Some of the in
23、itial problems in improving the visual quality of these early digital pictures were related to the selection of printing procedures and the distribution of intensity levels. The printing method used to obtain Fig. 1.1 was abandoned toward the end of 1921 in favor of a technique based on photographic
24、 reproduction made from tapes perforated at the telegraph receiving terminal. Figure 1.2 shows an images obtained using this method. The improvements over Fig. 1.1 are evident, both in tonal quality and in resolution. FIGURE 1.1 A digital picture produced in FIGURE 1.2 A digital picture1921 from a c
25、oded tape by a telegraph printer made in 1922 from a tape punchedWith special type faces (McFarlane) after the signals had crossed the Atlantic twice. Some errors are Visible. (McFarlane)The early Bartlane systems were capable of coding images in five distinct level of gray. This capability was incr
26、eased to 15 levels in 1929. Figure 1.3 is typical of the images that could be obtained using the 15-tone equipment. During this period, introduction of a system for developing a film plate via light beams that were modulated by the coded picture tape improved the reproduction process considerably.Al
27、though the examples just cited involve digital images, they are not considered digital image processing results in the context of our definition because computer were not involved in their creation. Thus, the history of digital processing is intimately tied to the development of the digital computer
28、. In fact digital images require so much storage and computational power that progress in the field of digital image processing has been dependent on the development of digital computers of supporting technologies that include data storage, display, and transmission.The idea of a computer goes back
29、to the invention of the abacus in Asia Minor, more than 5000 years ago. More recently, there were developments in the past two centuries that are the foundation of what we call computer today. However, the basis for what we call a modern digital computer dates back to only the 1940s with the introdu
30、ction by John von Neumann of two key concepts: (1) a memory to hold a stored program and data, and (2) conditional branching. There two ideas are the foundation of a central processing unit (CPU), which is at the heart of computer today. Starting with von Neumann, there were a series of advances tha
31、t led to computers powerful enough to be used for digital image processing. Briefly, these advances may be summarized as follow: (1) the invention of the transistor by Bell Laboratories in 1948;(2) the development in the 1950s and 1960s of the high-level programming languages COBOL (Common Business-
32、Oriented Language) and FORTRAN ( Formula Translator); (3) the invention of the integrated circuit (IC) at Texas Instruments in 1958;(4) the development of operating system in the early 1960s;(5) the development of the microprocessor (a single chip consisting of the central processing unit, memory, a
33、nd input and output controls) by Inter in the early 1970s;(6) introduction by IBM of the personal computer in 1981;(7) progressive miniaturization of components, starting with large scale integration (LI) in the late 1970s, then very large scale integration (VLSI) in the 1980s, to the present use of
34、 ultra large scale integration (ULSI).Figure 1.3 In 1929 from London to Cenerale Pershingthat New York delivers with 15 level tone equipmentsthrough cable with Foch do not the photograph by decorationConcurrent with these advances were development in the areas of mass storage and display systems, bo
35、th of which are fundamental requirements for digital image processing. The first computers powerful enough to carry out meaningful image processing tasks appeared in the early 1960s. The birth of what we call digital image processing today can be traced to the availability of those machines and the
36、onset of the apace program during that period. It took the combination of those two developments to bring into focus the potential of digital image processing concepts. Work on using computer techniques for improving images from a space probe began at the Jet Propulsion Laboratory (Pasadena, Califor
37、nia) in 1964 when pictures of the moon transmitted by Ranger 7 were processed by a computer to correct various types of image distortion inherent in the on-board television camera. Figure1.4shows the first image of the moon taken by Ranger 7 on July 31, 1964 at 9: 09 A. M. Eastern Daylight Time (EDT
38、), about 17 minutes before impacting the lunar surface (the markers, called reseau mark, are used for geometric corrections, as discussed in Chapter 5). This also is the first image of the moon taken by a U.S. spacecraft. The imaging lessons learned with ranger 7 served as the basis for improved met
39、hods used to enhance and restore images from the Surveyor missions to the moon, the Mariner series of flyby mission to Mars, the Apollo manned flights to the moon, and others.In parallel with space application, digital image processing techniques began in the late 1960s and early 1970s to be used in
40、 medical imaging, remote Earth resources observations, and astronomy. The invention in the early 1970s of computerized axial tomography (CAT), also called computerized tomography (CT) for short, is one of the most important events in the application of image processing in medical diagnosis. Computer
41、ized axial tomography is a process in which a ring of detectors encircles an object (or patient) and an X-ray source, concentric with the detector ring, rotates about the object. The X-rays pass through the object and are collected at the opposite end by the corresponding detectors in the ring. As t
42、he source rotates, this procedure is repeated. Tomography consists of algorithms that use the sensed data to construct an image that represents a “slice” through the object. Motion of the object in a direction perpendicular to the ring of detectors produces a set of such slices, which constitute a t
43、hree-dimensional (3-D) rendition of the inside of the object. Tomography was invented independently by Sir Godfrey N. Hounsfield and Professor Allan M. Cormack, who shared the X-rays were discovered in 1895 by Wilhelm Conrad Roentgen, for which he received the 1901 Nobel Prize for Physics. These two
44、 inventions, nearly 100 years apart, led to some of the most active application areas of image processing today.Figure 1.4 The first picture of the moon by a U.S.Spacecraft. Ranger 7 took this image on July 31,1964 at 9: 09 A.M. EDT, about 17 minutes beforeImpacting the lunar surface. (Courtesy of N
45、ASA.)中文翻譯數(shù)字圖像處理方法的研究1 緒論數(shù)字圖像處理方法的研究源于兩個(gè)主要應(yīng)用領(lǐng)域:其一是為了便于人們分析而對圖像信息進(jìn)行改進(jìn);其二是為了使機(jī)器自動(dòng)理解而對圖像數(shù)據(jù)進(jìn)行存儲(chǔ)、傳輸及顯示。1.1 數(shù)字圖像處理的概念一幅圖像可定義為一個(gè)二維函數(shù)f(x, y),這里x和y是空間坐標(biāo),而在任何一對空間坐標(biāo)f(x, y)上的幅值f稱為該點(diǎn)圖像的強(qiáng)度或灰度。當(dāng)x,y和幅值f為有限的、離散的數(shù)值時(shí),稱該點(diǎn)是由有限的元素組成的,沒一個(gè)元素都有一個(gè)特定的位置和幅值,這些元素稱為圖像元素、畫面元素或象素。象素是廣泛用于表示數(shù)字圖像元素的詞匯。在第二章,將用更正式的術(shù)語研究這些定義。視覺是人類最高級的感知器
46、官,所以,毫無疑問圖像在人類感知中扮演著最重要的角色。然而,人類感知只限于電磁波譜的視覺波段,成像機(jī)器則可覆蓋幾乎全部電磁波譜,從伽馬射線到無線電波。它們可以對非人類習(xí)慣的那些圖像源進(jìn)行加工,這些圖像源包括超聲波、電子顯微鏡及計(jì)算機(jī)產(chǎn)生的圖像。因此,數(shù)字圖像處理涉及各種各樣的應(yīng)用領(lǐng)域。圖像處理涉及的范疇或其他相關(guān)領(lǐng)域(例如,圖像分析和計(jì)算機(jī)視覺)的界定在初創(chuàng)人之間并沒有一致的看法。有時(shí)用處理的輸人和輸出內(nèi)容都是圖像這一特點(diǎn)來界定圖像處理的范圍。我們認(rèn)為這一定義僅是人為界定和限制。例如,在這個(gè)定義下,甚至最普通的計(jì)算一幅圖像灰度平均值的工作都不能算做是圖像處理。另一方面,有些領(lǐng)域(如計(jì)算機(jī)視覺)
47、研究的最高目標(biāo)是用計(jì)算機(jī)去模擬人類視覺,包括理解和推理并根據(jù)視覺輸人采取行動(dòng)等。這一領(lǐng)域本身是人工智能的分支,其目的是模仿人類智能。人工智能領(lǐng)域處在其發(fā)展過程中的初期階段,它的發(fā)展比預(yù)期的要慢得多,圖像分析(也稱為圖像理解)領(lǐng)域則處在圖像處理和計(jì)算機(jī)視覺兩個(gè)學(xué)科之間。從圖像處理到計(jì)算機(jī)視覺這個(gè)連續(xù)的統(tǒng)一體內(nèi)并沒有明確的界線。然而,在這個(gè)連續(xù)的統(tǒng)一體中可以考慮三種典型的計(jì)算處理(即低級、中級和高級處理)來區(qū)分其中的各個(gè)學(xué)科。低級處理涉及初級操作,如降低噪聲的圖像預(yù)處理,對比度增強(qiáng)和圖像尖銳化。低級處理是以輸人、輸出都是圖像為特點(diǎn)的處理。中級處理涉及分割 把圖像分為不同區(qū)域或目標(biāo)物)以及縮減對目標(biāo)
48、物的描述,以使其更適合計(jì)算機(jī)處理及對不同日標(biāo)的分類(識(shí)別)。中級圖像處理是以輸人為圖像,但輸出是從這些圖像中提取的特征(如邊緣、輪廓及不同物體的標(biāo)識(shí)等)為特點(diǎn)的。最后,高級處理涉及在圖像分析中被識(shí)別物體的總體理解,以及執(zhí)行與視覺相關(guān)的識(shí)別函數(shù)(處在連續(xù)統(tǒng)一體邊緣)等。根據(jù)上述討論,我們看到,圖像處理和圖像分析兩個(gè)領(lǐng)域合乎邏輯的重疊區(qū)域是圖像中特定區(qū)域或物體的識(shí)別這一領(lǐng)域。這樣,在本書中,我們界定數(shù)字圖像處理包括輸人和輸出均是圖像的處理,同時(shí)也包括從圖像中提取特征及識(shí)別特定物體的處理。舉一個(gè)簡單的文本自動(dòng)分析方面的例子來具體說明這一概念。在自動(dòng)分析文本時(shí)首先獲取一幅包含文本的圖像,對該圖像進(jìn)行預(yù)
49、處理,提取(分割)字符,然后以適合計(jì)算機(jī)處理的形式描述這些字符,最后識(shí)別這些字符,而所有這些操作都在本書界定的數(shù)字圖像處理的范圍內(nèi)。理解一頁的內(nèi)容可能要根據(jù)理解的復(fù)雜度從圖像分析或計(jì)算機(jī)視覺領(lǐng)域考慮問題。這樣,本書定義的數(shù)字圖像處理的概念將在有特殊社會(huì)和經(jīng)濟(jì)價(jià)值的領(lǐng)域內(nèi)通用。在以下各章展開的概念是那些應(yīng)用領(lǐng)域所用方法的基礎(chǔ)。1.2數(shù)字圖像處理的起源數(shù)字圖像處理最早的應(yīng)用之一是在報(bào)紙業(yè),當(dāng)時(shí),圖像第一次通過海底電纜從倫敦傳往紐約。早在20世紀(jì)20年代曾引入Btutlane電纜圖片傳輸系統(tǒng),把橫跨大西洋傳送一幅圖片所需的時(shí)間從一個(gè)多星期減少到3個(gè)小時(shí)。為了用電纜傳輸圖片,首先要進(jìn)行編碼,然后在接收
50、端用特殊的打印設(shè)備重構(gòu)該圖片。圖1.1就是用這種方法傳送并利用電報(bào)打印機(jī)通過字符模擬中間色調(diào)還原出來的圖像。這些早期數(shù)字圖像視覺質(zhì)量的改進(jìn)工作,涉及到打印過程的選擇和亮度等級的分布等問題。用于得到圖1.1的打印方法到1921年底就被徹底淘汰了,轉(zhuǎn)而支持一種基于光學(xué)還原的技術(shù),該技術(shù)在電報(bào)接收端用穿孔紙帶打出圖片。圖1.2就是用這種方法得到的圖像,對比圖1.1,它在色調(diào)質(zhì)量和分辨率方面的改進(jìn)都很明顯。 圖1.1 1421年由電報(bào)打印機(jī)采用特殊字 圖1.2 1922年在信號(hào)兩次穿越大西洋后, 符在編碼紙帶中產(chǎn)生的數(shù)字圖像 從穿孔紙帶得到的數(shù)字圖像,可以 ( McFalsne) 看出某些差錯(cuò) ( McFalsne) 早期的Bartlane系統(tǒng)可以用5個(gè)灰度等級對圖像編碼,到1929年已增加到15個(gè)等級。圖1.3所示的這種典型類型的圖像就是用15級色調(diào)設(shè)備得到的。在這一時(shí)期,由于引入了一種用編碼圖像紙帶去調(diào)制光束而使底片
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年移動(dòng)互聯(lián)網(wǎng)應(yīng)用開發(fā)考試試題及答案
- 2025年數(shù)據(jù)科學(xué)與大數(shù)據(jù)技術(shù)課程考試試卷及答案
- 2025年農(nóng)村經(jīng)濟(jì)管理師資格考試試卷及答案
- 2025年美術(shù)教師專業(yè)技能考試試題及答案
- 2025年教育科技在課堂應(yīng)用能力考核試卷及答案
- 2025年教師資格證考試卷及答案
- 2025年非洲文化與貿(mào)易研究生入學(xué)考試試卷及答案
- 2025年高層管理人員溝通技巧考核試題及答案
- 正規(guī)煤炭運(yùn)輸合同
- 2024年度浙江省護(hù)師類之主管護(hù)師自我檢測試卷B卷附答案
- 國家開放大學(xué)《思想道德與法治》社會(huì)實(shí)踐報(bào)告范文二
- 電子信息工程專業(yè)應(yīng)用能力測試卷
- 消防系統(tǒng)維護(hù)保養(yǎng)方案
- 骨科護(hù)理實(shí)習(xí)生小講課
- 2025至2030年中國金剛石繩鋸行業(yè)市場運(yùn)行格局及前景戰(zhàn)略分析報(bào)告
- 云南省昆明市五華區(qū)2023-2024學(xué)年八年級下學(xué)期7月期末物理試題(含答案)
- 2025年上海市研發(fā)公共服務(wù)平臺(tái)管理中心招聘題庫帶答案分析
- 2025年輕人情緒消費(fèi)趨勢報(bào)告-抖音商城xsocialbeta-202506
- 工程保險(xiǎn)課件
- 2025年新高考1卷(新課標(biāo)Ⅰ卷)語文試卷(含答案)
- 培訓(xùn)中心項(xiàng)目管理制度
評論
0/150
提交評論