




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、直線與方程3.1.1直線的傾斜角和斜率教學(xué)過程:(一) 直線的傾斜角的概念當(dāng)直線l與x軸相交時, 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時, 規(guī)定= 0°.問: 傾斜角的取值范圍是什么? 0°180°.當(dāng)直線l與x軸垂直時, = 90°.因為平面直角坐標(biāo)系內(nèi)的每一條直線都有確定的傾斜程度, 引入直線的傾斜角之后, 我們就可以用傾斜角來表示平面直角坐標(biāo)系內(nèi)的每一條直線的傾斜程度.確定平面直角坐標(biāo)系內(nèi)的一條直線位置的幾何要素: 一個點P和一個傾斜角.(二)直線的斜率:一條直線的傾斜角(90&
2、#176;)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是 k = tan當(dāng)直線l與x軸平行或重合時, =0°, k = tan0°=0;當(dāng)直線l與x軸垂直時, = 90°, k 不存在.由此可知, 一條直線l的傾斜角一定存在,但是斜率k不一定存在.例如, =45°時, k = tan45°= 1; =135°時, k = tan135°= tan(180° 45°) = - tan45°= - 1.學(xué)習(xí)了斜率之后, 我們又可以用斜率來表示直線的傾斜程度. (三) 直線的斜率公式:給
3、定兩點P1(x1,y1),P2(x2,y2),x1x2,如何用兩點的坐標(biāo)來表示直線P1P2的斜率?斜率公式: 對于上面的斜率公式要注意下面四點:(1) 當(dāng)x1=x2時,公式右邊無意義,直線的斜率不存在,傾斜角= 90°, 直線與x軸垂直;(2)k與P1、P2的順序無關(guān), 即y1,y2和x1,x2在公式中的前后次序可以同時交換, 但分子與分母不能交換; (3)斜率k可以不通過傾斜角而直接由直線上兩點的坐標(biāo)求得;(4) 當(dāng) y1=y2時, 斜率k = 0, 直線的傾斜角=0°,直線與x軸平行或重合. (5)求直線的傾斜角可以由直線上兩點的坐標(biāo)先求斜率而得到 (四)例題:例1 已
4、知A(3, 2), B(-4, 1), C(0, -1), 求直線AB, BC, CA的斜率, 并判斷它們的傾斜角是鈍角還是銳角.分析: 已知兩點坐標(biāo), 而且x1x2, 由斜率公式代入即可求得k的值; 而當(dāng)k = tan<0時, 傾斜角是鈍角; 而當(dāng)k = tan>0時, 傾斜角是銳角; 而當(dāng)k = tan=0時, 傾斜角是0°.3.1.2兩條直線的平行與垂直討論: 兩條直線中有一條直線沒有斜率, (1)當(dāng)另一條直線的斜率也不存在時,兩直線的傾斜角都為90°,它們互相平行;(2)當(dāng)另一條直線的斜率為0時,一條直線的傾斜角為90°,另一條直線的傾斜角為0
5、°,兩直線互相垂直(二)兩條直線的斜率都存在時, 兩直線的平行與垂直結(jié)論1: 兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即注意: 上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結(jié)論并不成立即如果k1=k2, 那么一定有L1L2; 反之則不一定.結(jié)論2: 兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負倒數(shù);反之,如果它們的斜率互為負倒數(shù),那么它們互相垂直,即注意: 結(jié)論成立的條件. 即如果k1·k2 = -1, 那么一定有L1L2; 反之則不一定.例1 已知A(2,3), B(-4,
6、0), P(-3,1), Q(-1,2), 試判斷直線BA與PQ的位置關(guān)系分析: 解: 直線BA的斜率k1=(3-0)/(2-(-4)=0.5, 直線PQ的斜率k2=(2-1)/(-1-(-3)=0.5,因為 k1=k2=0.5, 所以 直線BAPQ.例2 已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 試判斷直線AB與PQ的位置關(guān)系.解: 直線AB的斜率k1= (6-0)/(3-(-6)=2/3, 直線PQ的斜率k2= (6-3)(-2-0)=-3/2, 因為 k1·k2 = -1 所以 ABPQ. 3.2.1 直線的點斜式方程三、教學(xué)設(shè)想問 題設(shè)計意圖師生
7、活動1、在直線坐標(biāo)系內(nèi)確定一條直線,應(yīng)知道哪些條件?使學(xué)生在已有知識和經(jīng)驗的基礎(chǔ)上,探索新知。學(xué)生回顧,并回答。然后教師指出,直線的方程,就是直線上任意一點的坐標(biāo)滿足的關(guān)系式。 2、直線經(jīng)過點,且斜率為。設(shè)點是直線上的任意一點,請建立與之間的關(guān)系。培養(yǎng)學(xué)生自主探索的能力,并體會直線的方程,就是直線上任意一點的坐標(biāo)滿足的關(guān)系式,從而掌握根據(jù)條件求直線方程的方法。學(xué)生根據(jù)斜率公式,可以得到,當(dāng)時,即 (1) 教師對基礎(chǔ)薄弱的學(xué)生給予關(guān)注、引導(dǎo),使每個學(xué)生都能推導(dǎo)出這個方程。 3、(1)過點,斜率是的直線上的點,其坐標(biāo)都滿足方程(1)嗎? 使學(xué)生了解方程為直線方程必須滿兩個條件。學(xué)生驗證,教師引導(dǎo)。
8、問 題設(shè)計意圖師生活動(2)坐標(biāo)滿足方程(1)的點都在經(jīng)過,斜率為的直線上嗎? 使學(xué)生了解方程為直線方程必須滿兩個條件。學(xué)生驗證,教師引導(dǎo)。然后教師指出方程(1)由直線上一定點及其斜率確定,所以叫做直線的點斜式方程,簡稱點斜式(point slope form).4、直線的點斜式方程能否表示坐標(biāo)平面上的所有直線呢?使學(xué)生理解直線的點斜式方程的適用范圍。 學(xué)生分組互相討論,然后說明理由。5、(1)軸所在直線的方程是什么?軸所在直線的方程是什么?(2)經(jīng)過點且平行于軸(即垂直于軸)的直線方程是什么? (3)經(jīng)過點且平行于軸(即垂直于軸)的直線方程是什么? 進一步使學(xué)生理解直線的點斜式方程的適用范圍
9、,掌握特殊直線方程的表示形式。 教師學(xué)生引導(dǎo)通過畫圖分析,求得問題的解決。6、例1的教學(xué)。學(xué)會運用點斜式方程解決問題,清楚用點斜式公式求直線方程必須具備的兩個條件:(1)一個定點;(2)有斜率。同時掌握已知直線方程畫直線的方法。教師引導(dǎo)學(xué)生分析要用點斜式求直線方程應(yīng)已知那些條件?題目那些條件已經(jīng)直接給予,那些條件還有待已去求。在坐標(biāo)平面內(nèi),要畫一條直線可以怎樣去畫。7、已知直線的斜率為,且與軸的交點為,求直線的方程。 引入斜截式方程,讓學(xué)生懂得斜截式方程源于點斜式方程,是點斜式方程的一種特殊情形。 學(xué)生獨立求出直線的方程: (2) 再此基礎(chǔ)上,教師給出截距的概念,引導(dǎo)學(xué)生分析方程(2)由哪兩個
10、條件確定,讓學(xué)生理解斜截式方程概念的內(nèi)涵。8、觀察方程,它的形式具有什么特點?深入理解和掌握斜截式方程的特點? 學(xué)生討論,教師及時給予評價。問 題設(shè)計意圖師生活動9、直線在軸上的截距是什么?使學(xué)生理解“截距”與“距離”兩個概念的區(qū)別。學(xué)生思考回答,教師評價。10、你如何從直線方程的角度認識一次函數(shù)?一次函數(shù)中和的幾何意義是什么?你能說出一次函數(shù)圖象的特點嗎?體會直線的斜截式方程與一次函數(shù)的關(guān)系.學(xué)生思考、討論,教師評價、歸納概括。11、例2的教學(xué)。 掌握從直線方程的角度判斷兩條直線相互平行,或相互垂直;進一步理解斜截式方程中的幾何意義。 教師引導(dǎo)學(xué)生分析:用斜率判斷兩條直線平行、垂直結(jié)論。思考
11、(1)時, 有何關(guān)系?(2)時,有何關(guān)系?在此由學(xué)生得出結(jié)論:且;12、課堂練習(xí)第100頁練習(xí)第1,2,3,4題。鞏固本節(jié)課所學(xué)過的知識。學(xué)生獨立完成,教師檢查反饋。13、小結(jié)使學(xué)生對本節(jié)課所學(xué)的知識有一個整體性的認識,了解知識的來龍去脈。教師引導(dǎo)學(xué)生概括:(1)本節(jié)課我們學(xué)過那些知識點;(2)直線方程的點斜式、斜截式的形式特點和適用范圍是什么?(3)求一條直線的方程,要知道多少個條件?14、布置作業(yè):第106頁第1題的(1)、(2)、(3)和第3、5題鞏固深化學(xué)生課后獨立完成。3.2.2 直線的兩點式方程一、教學(xué)目標(biāo)1、知識與技能(1)掌握直線方程的兩點的形式特點及適用范圍;(2)了解直線方
12、程截距式的形式特點及適用范圍。2、過程與方法 讓學(xué)生在應(yīng)用舊知識的探究過程中獲得到新的結(jié)論,并通過新舊知識的比較、分析、應(yīng)用獲得新知識的特點。3、情態(tài)與價值觀(1)認識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化;(2)培養(yǎng)學(xué)生用聯(lián)系的觀點看問題。二、教學(xué)重點、難點:1、 重點:直線方程兩點式。2、難點:兩點式推導(dǎo)過程的理解。三、教學(xué)設(shè)想問 題設(shè)計意圖師生活動1、利用點斜式解答如下問題:(1)已知直線經(jīng)過兩點,求直線的方程.(2)已知兩點其中,求通過這兩點的直線方程。遵循由淺及深,由特殊到一般的認知規(guī)律。使學(xué)生在已有的知識基礎(chǔ)上獲得新結(jié)論,達到溫故知新的目的。 教師引導(dǎo)學(xué)生:根據(jù)已有的知識,要求直線方程,應(yīng)知
13、道什么條件?能不能把問題轉(zhuǎn)化為已經(jīng)解決的問題呢?在此基礎(chǔ)上,學(xué)生根據(jù)已知兩點的坐標(biāo),先判斷是否存在斜率,然后求出直線的斜率,從而可求出直線方程:(1)(2)教師指出:當(dāng)時,方程可以寫成由于這個直線方程由兩點確定,所以我們把它叫直線的兩點式方程,簡稱兩點式(two-point form).2、若點中有,或,此時這兩點的直線方程是什么?使學(xué)生懂得兩點式的適用范圍和當(dāng)已知的兩點不滿足兩點式的條件時它的方程形式。 教師引導(dǎo)學(xué)生通過畫圖、觀察和分析,發(fā)現(xiàn)當(dāng)時,直線與軸垂直,所以直線方程為:;當(dāng)時,直線與軸垂直,直線方程為:。問 題設(shè)計意圖師生活動3、例3 教學(xué) 已知直線與軸的交點為A,與軸的交點為B,其
14、中,求直線的方程。使學(xué)生學(xué)會用兩點式求直線方程;理解截距式源于兩點式,是兩點式的特殊情形。教師引導(dǎo)學(xué)生分析題目中所給的條件有什么特點?可以用多少方法來求直線的方程?那種方法更為簡捷?然后由求出直線方程: 教師指出:的幾何意義和截距式方程的概念。4、例4教學(xué) 已知三角形的三個頂點A(-5,0),B(3,-3),C(0,2),求BC邊所在直線的方程,以及該邊上中線所在直線的方程。 讓學(xué)生學(xué)會根據(jù)題目中所給的條件,選擇恰當(dāng)?shù)闹本€方程解決問題。 教師給出中點坐標(biāo)公式,學(xué)生根據(jù)自己的理解,選擇恰當(dāng)方法求出邊BC所在的直線方程和該邊上中線所在直線方程。在此基礎(chǔ)上,學(xué)生交流各自的作法,并進行比較。5、課堂練
15、習(xí) 第102頁第1、2、3題。學(xué)生獨立完成,教師檢查、反饋。6、小結(jié)增強學(xué)生對直線方種四種形式(點斜式、斜截式、兩點式、截距式)互相之間的聯(lián)系的理解。教師提出:(1)到目前為止,我們所學(xué)過的直線方程的表達形式有多少種?它們之間有什么關(guān)系?(2)要求一條直線的方程,必須知道多少個條件?7、布置作業(yè)鞏固深化,培養(yǎng)學(xué)生的獨立解決問題的能力。學(xué)生課后完成3.2.3 直線的一般式方程一、教學(xué)目標(biāo)1、知識與技能(1)明確直線方程一般式的形式特征;(2)會把直線方程的一般式化為斜截式,進而求斜率和截距;(3)會把直線方程的點斜式、兩點式化為一般式。2、過程與方法 學(xué)會用分類討論的思想方法解決問題。3、情態(tài)與
16、價值觀(1)認識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化;(2)用聯(lián)系的觀點看問題。二、教學(xué)重點、難點:1、重點:直線方程的一般式。2、難點:對直線方程一般式的理解與應(yīng)用。三、教學(xué)設(shè)想問 題設(shè)計意圖師生活動1、(1)平面直角坐標(biāo)系中的每一條直線都可以用一個關(guān)于的二元一次方程表示嗎?(2)每一個關(guān)于的二元一次方程(A,B不同時為0)都表示一條直線嗎?使學(xué)生理解直線和二元一次方程的關(guān)系。 教師引導(dǎo)學(xué)生用分類討論的方法思考探究問題(1),即直線存在斜率和直線不存在斜率時求出的直線方程是否都為二元一次方程。對于問題(2),教師引導(dǎo)學(xué)生理解要判斷某一個方程是否表示一條直線,只需看這個方程是否可以轉(zhuǎn)化為直線方程的某種
17、形式。為此要對B分類討論,即當(dāng)時和當(dāng)B=0時兩種情形進行變形。然后由學(xué)生去變形判斷,得出結(jié)論: 關(guān)于的二元一次方程,它都表示一條直線。 教師概括指出:由于任何一條直線都可以用一個關(guān)于的二元一次方程表示;同時,任何一個關(guān)于的二元一次方程都表示一條直線。 我們把關(guān)于關(guān)于的二元一次方程(A,B不同時為0)叫做直線的一般式方程,簡稱一般式(general form).2、直線方程的一般式與其他幾種形式的直線方程相比,它有什么優(yōu)點?使學(xué)生理解直線方程的一般式的與其他形 學(xué)生通過對比、討論,發(fā)現(xiàn)直線方程的一般式與其他形式的直線方程的一個不同點是:問 題設(shè)計意圖師生活動式的不同點。直線的一般式方程能夠表示平
18、面上的所有直線,而點斜式、斜截式、兩點式方程,都不能表示與軸垂直的直線。3、在方程中,A,B,C為何值時,方程表示的直線(1)平行于軸;(2)平行于軸;(3)與軸重合;(4)與重合。使學(xué)生理解二元一次方程的系數(shù)和常數(shù)項對直線的位置的影響。 教師引導(dǎo)學(xué)生回顧前面所學(xué)過的與軸平行和重合、與軸平行和重合的直線方程的形式。然后由學(xué)生自主探索得到問題的答案。4、例5的教學(xué) 已知直線經(jīng)過點A(6,-4),斜率為,求直線的點斜式和一般式方程。 使學(xué)生體會把直線方程的點斜式轉(zhuǎn)化為一般式,把握直線方程一般式的特點。學(xué)生獨立完成。然后教師檢查、評價、反饋。指出:對于直線方程的一般式,一般作如下約定:一般按含項、含
19、項、常數(shù)項順序排列;項的系數(shù)為正;,的系數(shù)和常數(shù)項一般不出現(xiàn)分數(shù);無特加要時,求直線方程的結(jié)果寫成一般式。5、例6的教學(xué) 把直線的一般式方程化成斜截式,求出直線的斜率以及它在軸與軸上的截距,并畫出圖形。使學(xué)生體會直線方程的一般式化為斜截式,和已知直線方程的一般式求直線的斜率和截距的方法。 先由學(xué)生思考解答,并讓一個學(xué)生上黑板板書。然后教師引導(dǎo)學(xué)生歸納出由直線方程的一般式,求直線的斜率和截距的方法:把一般式轉(zhuǎn)化為斜截式可求出直線的斜率的和直線在軸上的截距。求直線與軸的截距,即求直線與軸交點的橫坐標(biāo),為此可在方程中令=0,解出值,即為與直線與軸的截距。 在直角坐標(biāo)系中畫直線時,通常找出直線下兩個坐
20、標(biāo)軸的交點。6、二元一次方程的每一個解與坐標(biāo)平面中點的有什么關(guān)系?直線與二元一次方程的解之間有什么關(guān)系?使學(xué)生進一步理解二元一次方程與直線的關(guān)系,體會直解坐標(biāo)系把直線與方程聯(lián)系起來。 學(xué)生閱讀教材第105頁,從中獲得對問題的理解。7、課堂練習(xí) 第105練習(xí)第2題和第3(2)鞏固所學(xué)知識和方法。 學(xué)生獨立完成,教師檢查、評價。問 題設(shè)計意圖師生活動8、小結(jié)使學(xué)生對直線方程的理解有一個整體的認識。 (1)請學(xué)生寫出直線方程常見的幾種形式,并說明它們之間的關(guān)系。 (2)比較各種直線方程的形式特點和適用范圍。 (3)求直線方程應(yīng)具有多少個條件?(4)學(xué)習(xí)本節(jié)用到了哪些數(shù)學(xué)思想方法?9、布置作業(yè) 第10
21、6頁習(xí)題3.2第10題和第11題。鞏固課堂上所學(xué)的知識和方法。學(xué)生課后獨立思考完成。3.3-1兩直線的交點坐標(biāo)教學(xué)目標(biāo)知識與技能:1。直線和直線的交點 2二元一次方程組的解過程和方法:1。學(xué)習(xí)兩直線交點坐標(biāo)的求法,以及判斷兩直線位置的方法。 2掌握數(shù)形結(jié)合的學(xué)習(xí)法。 3組成學(xué)習(xí)小組,分別對直線和直線的位置進行判斷,歸納過定點的 直線系方程。情態(tài)和價值:1。通過兩直線交點和二元一次方程組的聯(lián)系,從而認識事物之間的內(nèi)的聯(lián)系。 2能夠用辯證的觀點看問題。教學(xué)重點,難點重點:判斷兩直線是否相交,求交點坐標(biāo)。難點:兩直線相交與二元一次方程的關(guān)系。教學(xué)方法:啟發(fā)引導(dǎo)式 在學(xué)生認識直線方程的基礎(chǔ)上,啟發(fā)學(xué)生
22、理解兩直線交點與二元一次方程組的的相互關(guān)系。引導(dǎo)學(xué)生將兩直線交點的求解問題轉(zhuǎn)化為相應(yīng)的直線方程構(gòu)成的二元一次方程組解的問題。由此體會“形”的問題由“數(shù)”的運算來解決。教具:用POWERPOINT課件的輔助式教學(xué)教學(xué)過程:一 情境設(shè)置,導(dǎo)入新課用大屏幕打出直角坐標(biāo)系中兩直線,移動直線,讓學(xué)生觀察這兩直線的位置關(guān)系。課堂設(shè)問一:由直線方程的概念,我們知道直線上的一點與二元一次方程的解的關(guān)系,那如果兩直線相交于一點,這一點與這兩條直線的方程有何關(guān)系?二 講授新課1 分析任務(wù),分組討論,判斷兩直線的位置關(guān)系已知兩直線L1:A1x+B1y +C1=0,L2:A2x+B2y+C2=0如何判斷這兩條直線的關(guān)
23、系? 教師引導(dǎo)學(xué)生先從點與直線的位置關(guān)系入手,看表一,并填空。 幾何元素及關(guān)系 代數(shù)表示點A A(a,b)直線LL:Ax+By+C=0點A在直線上直線L1與 L2的交點A課堂設(shè)問二:如果兩條直線相交,怎樣求交點坐標(biāo)?交點坐標(biāo)與二元一次方程組有什關(guān)系?學(xué)生進行分組討論,教師引導(dǎo)學(xué)生歸納出兩直線是否相交與其方程所組成的方程組有何關(guān)系?(1) 若二元一次方程組有唯一解,L 1與L2 相交。(2) 若二元一次方程組無解,則L 1與 L2平行。(3) 若二元一次方程組有無數(shù)解,則L 1 與L2重合。課后探究:兩直線是否相交與其方程組成的方程組的系數(shù)有何關(guān)系?2 例題講解,規(guī)范表示,解決問題例題1:求下列
24、兩直線交點坐標(biāo)L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程組 得 x=-2,y=2 所以L1與L2的交點坐標(biāo)為M(-2,2),如圖3。3。1。教師可以讓學(xué)生自己動手解方程組,看解題是否規(guī)范,條理是否清楚,表達是否簡潔,然后才進行講解。同類練習(xí):書本110頁第1,2題。例2 判斷下列各對直線的位置關(guān)系。如果相交,求出交點坐標(biāo)。(1) L1:x-y=0,L2:3x+3y-10=0(2) L1:3x-y=0,L2:6x-2y=0(3) L1:3x+4y-5=0,L2:6x+8y-10=0 這道題可以作為練習(xí)以鞏固判斷兩直線位置關(guān)系。三 啟發(fā)拓展,靈活應(yīng)用。課堂設(shè)問一。當(dāng)變化時,方
25、程 3x+4y-2+(2x+y+2)=0表示何圖形,圖形有何特點?求出圖形的交點坐標(biāo)。(1) 可以一用信息技術(shù),當(dāng) 取不同值時,通過各種圖形,經(jīng)過觀察,讓學(xué)生從直觀上得出結(jié)論,同時發(fā)現(xiàn)這些直線的共同特點是經(jīng)過同一點。(2) 找出或猜想這個點的坐標(biāo),代入方程,得出結(jié)論。(3) 結(jié)論,方程表示經(jīng)過這兩條直線L1 與L2的交點的直線的集合。 例2 已知為實數(shù),兩直線:,:相交于一點,求證交點不可能在第一象限及軸上.分析:先通過聯(lián)立方程組將交點坐標(biāo)解出,再判斷交點橫縱坐標(biāo)的范圍.解:解方程組若0,則1.當(dāng)1時,0,此時交點在第二象限內(nèi).又因為為任意實數(shù)時,都有10,故0因為1(否則兩直線平行,無交點)
26、 ,所以,交點不可能在軸上,得交點()四 小結(jié):直線與直線的位置關(guān)系,求兩直線的交點坐標(biāo),能將幾何問題轉(zhuǎn)化為代數(shù)問題來解決,并能進行應(yīng)用。五 練習(xí)及作業(yè):1光線從M(-2,3)射到x軸上的一點P(1,0)后被x軸反射,求反射光線所在的直線方程。2求滿足下列條件的直線方程。經(jīng)過兩直線2x-3y+10=0與3x+4y-2=0的交點,且和直線3x-2y+4=0垂直。板書設(shè)計:略3.3.2直線與直線之間的位置關(guān)系-兩點間距離教學(xué)目標(biāo)知識與技能:掌握直角坐標(biāo)系兩點間距離,用坐標(biāo)法證明簡單的幾何問題。過程和方法:通過兩點間距離公式的推導(dǎo),能更充分體會數(shù)形結(jié)合的優(yōu)越性。 情態(tài)和價值:體會事物之間的內(nèi)在聯(lián)系,
27、能用代數(shù)方法解決幾何問題教學(xué)重點,難點:重點,兩點間距離公式的推導(dǎo)。難點,應(yīng)用兩點間距離公式證明幾何問題。教學(xué)方式:啟發(fā)引導(dǎo)式。教學(xué)用具:用多媒體輔助教學(xué)。教學(xué)過程:一, 情境設(shè)置,導(dǎo)入新課課堂設(shè)問一:回憶數(shù)軸上兩點間的距離公式,同學(xué)們能否用以前所學(xué)的知識來解決以下問題平面直角坐標(biāo)系中兩點,分別向x軸和y軸作垂線,垂足分別為直線相交于點Q。在直角中,為了計算其長度,過點向x軸作垂線,垂足為 過點 向y軸作垂線,垂足為 ,于是有所以,=。由此得到兩點間的距離公式在教學(xué)過程中,可以提出問題讓學(xué)生自己思考,教師提示,根據(jù)勾股定理,不難得到。二,例題解答,細心演算,規(guī)范表達。例1 :以知點A(-1,2
28、),B(2, ),在x軸上求一點,使 ,并求 的值。解:設(shè)所求點P(x,0),于是有由 得解得 x=1。所以,所求點P(1,0)且 通過例題,使學(xué)生對兩點間距離公式理解。應(yīng)用。解法二:由已知得,線段AB的中點為,直線AB的斜率為k=線段AB的垂直平分線的方程是 y-在上述式子中,令y=0,解得x=1。所以所求點P的坐標(biāo)為(1,0)。因此同步練習(xí):書本112頁第1,2 題三 鞏固反思,靈活應(yīng)用。(用兩點間距離公式來證明幾何問題。)例2 證明平行四邊行四條邊的平方和等于兩條對角線的平方和。分析:首先要建立直角坐標(biāo)系,用坐標(biāo)表示有關(guān)量,然后用代數(shù)進行運算,最后把代數(shù)運算“翻譯”成幾何關(guān)系。這一道題可
29、以讓學(xué)生討論解決,讓學(xué)生深刻體會數(shù)形之間的關(guān)系和轉(zhuǎn)化,并從中歸納出應(yīng)用代數(shù)問題解決幾何問題的基本步驟。 證明:如圖所示,以頂點為坐標(biāo)原點,邊所在的直線為軸,建立直角坐標(biāo)系,有(,)。設(shè)(,),(,),由平行四邊形的性質(zhì)的點的坐標(biāo)為(,),因為 所以, 所以,因此,平行四邊形四條邊的平方和等于兩條對角線的平方和。上述解決問題的基本步驟可以讓學(xué)生歸納如下:第一步:建立直角坐標(biāo)系,用坐標(biāo)表示有關(guān)的量。第二步:進行有關(guān)代數(shù)運算。第三步;把代數(shù)結(jié)果“翻譯”成幾何關(guān)系。思考:同學(xué)們是否還有其它的解決辦法?還可用綜合幾何的方法證明這道題。課堂小結(jié):主要講述了兩點間距離公式的推導(dǎo),以及應(yīng)用,要懂得用代數(shù)的方法
30、解決幾何問題,建立直角坐標(biāo)系的重要性。課后練習(xí)1.:證明直角三角形斜邊上的中點到三個頂點的距離相等2.在直線x-3y-2=0上求兩點,使它與(-2,2)構(gòu)成一個等邊三角形。3點(0,5)到直線y=2x的距離是。板書設(shè)計:略。 333兩條直線的位置關(guān)系點到直線的距離公式教學(xué)目標(biāo):知識與技能:1. 理解點到直線距離公式的推導(dǎo),熟練掌握點到直線的距離公式;能力和方法: 會用點到直線距離公式求解兩平行線距離情感和價值:1。 認識事物之間在一定條件下的轉(zhuǎn)化。用聯(lián)系的觀點看問題教學(xué)重點:點到直線的距離公式教學(xué)難點:點到直線距離公式的理解與應(yīng)用.教學(xué)方法:學(xué)導(dǎo)式教 具:多媒體、實物投影儀教學(xué)過程 一、情境設(shè)置,導(dǎo)入新課:前面幾節(jié)課,我們一起研究學(xué)習(xí)了兩直線的平行或垂直的充要條件,兩直線的夾角公式,兩直線的交點問題,兩點間的距離公式。逐步熟悉了利用代數(shù)方法研究幾何問題的思想方法.這一節(jié),我們將研究怎樣由點的坐標(biāo)和直線的方程直接求點P到直線的距離。 用POWERPOINT打出平面直角坐標(biāo)系中兩直線,進行移動,使學(xué)生回顧兩直線的位置關(guān)系,且在直線上取兩點,讓學(xué)生指出兩點間的距離公式,復(fù)習(xí)前面所學(xué)。要求學(xué)生思考一直線上的計算?能否用兩點間距離公式進行推導(dǎo)?兩條直線方程如下:. 二、講解新課:1點到直線距離公式:點到直線的距離為: (1)提出問題在平面直角坐標(biāo)系中,如果已知某點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 東城賓館裝修合同范本
- 機械結(jié)構(gòu)設(shè)計與創(chuàng)新課件
- 老年綜合征護理
- 電廠應(yīng)急管理培訓(xùn)課程
- 手外傷護理常規(guī)
- 開展“樹清廉家風(fēng)-建和諧家庭”活動總結(jié)模版
- 意識喪失的臨床護理
- 無痛病房護理
- 胰腺炎癥護理
- 門診護理禮儀規(guī)范要點
- 2024年黑龍江省綏化市中考道德與法治試卷(含答案與解析)
- 電子商務(wù)那些事學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年執(zhí)業(yè)藥師繼續(xù)教育專業(yè)答案
- 2025屆高考英語:閱讀理解及完型??贾攸c高頻(帶音標(biāo))500詞素材
- 2024年秋季新外研版三年級上冊英語課件 Appendices Mulan
- 《世界是普遍聯(lián)系的》名師課件
- 2024年五年級英語下冊 Module 8 Unit 2 I made a kite教案 外研版(三起)
- DL∕T 1909-2018 -48V電力通信直流電源系統(tǒng)技術(shù)規(guī)范
- 聽歌識曲完整版本
- NB-T32042-2018光伏發(fā)電工程建設(shè)監(jiān)理規(guī)范
- 延安通和電業(yè)招聘筆試真題2022
評論
0/150
提交評論