七年級三角形四大模型_第1頁
七年級三角形四大模型_第2頁
七年級三角形四大模型_第3頁
七年級三角形四大模型_第4頁
七年級三角形四大模型_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上2016年01月07日liwei的初中數(shù)學組卷一選擇題(共5小題)1(2015春揚中市校級期末)如圖1,一副三角板的兩個直角重疊在一起,A=30°,C=45°COD固定不動,AOB繞著O點逆時針旋轉(zhuǎn)°(0°180° )(1)若AOB繞著O點旋轉(zhuǎn)圖2的位置,若BOD=60°,則AOC=;(2)若0°90°,在旋轉(zhuǎn)的過程中BOD+AOC的值會發(fā)生變化嗎?若不變化,請求出這個定值;(3)若90°180°,問題(2)中的結(jié)論還成立嗎?說明理由;(4)將AOB繞點O逆時針旋轉(zhuǎn)度(

2、0°180°),問當為多少度時,兩個三角形至少有一組邊所在直線垂直?(請直接寫出所有答案)2(2014赤峰)如圖1,E是直線AB,CD內(nèi)部一點,ABCD,連接EA,ED(1)探究猜想:若A=30°,D=40°,則AED等于多少度?若A=20°,D=60°,則AED等于多少度?猜想圖1中AED,EAB,EDC的關系并證明你的結(jié)論(2)拓展應用:如圖2,射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域、位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:PEB,PFC,EPF的關

3、系(不要求證明)3(2013秋微山縣期中)如圖,若DBC=D,BD平分ABC,ABC=50°,則BCD的大小為()A50°B100°C130°D150°4(2013春連云區(qū)校級月考)如圖,小亮從A點出發(fā)前進10m,向右轉(zhuǎn)15°,再前進10m,又向右轉(zhuǎn)15°,這樣一直走下去,他第一次回到出發(fā)點A時,一共走了米數(shù)是()A120B150C240D3605如圖,在ABC中,A=42°,ABC和ACB的三等分線分別交于點D,E,則BDC的度數(shù)是()A67°B84°C88°D110°二填

4、空題(共3小題)6(2007遵義)如圖所示是重疊的兩個直角三角形將其中一個直角三角形沿BC方向平移得到DEF如果AB=8cm,BE=4cm,DH=3cm,則圖中陰影部分面積為cm27(2013秋和縣期末)如圖,ACD是ABC的外角,ABC的平分線與ACD的平分線交于點A1,A1BC的平分線與A1CD的平分線交于點A2,An1BC的平分線與An1CD的平分線交于點An設A=則:(1)A1=;(2)A2=;(3)An=8(2013秋綦江縣校級期中)如圖,在ABC中,已知點D,E,F(xiàn)分別為邊BC,AD,CE的中點,且,則陰影部分的面積等于三解答題(共9小題)9(2009春江陰市校級月考)一個四邊形截

5、去一個角后就一定是三角形嗎?畫出所有可能的圖形,并分別說出內(nèi)角和和外角和變化情況10(2014春相城區(qū)月考)如圖,A=65°,ABD=30°,ACB=72°,且CE平分ACB,求BEC的度數(shù)11(2015春建湖縣校級月考)我們知道,任何一個三角形的三條內(nèi)角平分線相交于一點,如圖,若ABC 的三條內(nèi)角平分線相交于點I,過I作DEAI分別交AB、AC于點D、E(1)請你通過畫圖、度量,填寫右上表(圖畫在草稿紙上,并盡量畫準確)(2)從上表中你發(fā)現(xiàn)了BIC與BDI之間有何數(shù)量關系,請寫出來,并說明其中的道理 BAC的度數(shù)40°60°90°1

6、20°BIC的度數(shù)BDI的度數(shù)12(2007福州)如圖,直線ACBD,連接AB,直線AC、BD及線段AB把平面分成、四個部分,規(guī)定:線上各點不屬于任何部分當動點P落在某個部分時,連接PA,PB,構(gòu)成PAC,APB,PBD三個角(提示:有公共端點的兩條重合的射線所組成的角是0°角)(1)當動點P落在第部分時,求證:APB=PAC+PBD;(2)當動點P落在第部分時,APB=PAC+PBD是否成立?(直接回答成立或不成立)(3)當動點P落在第部分時,全面探究PAC,APB,PBD之間的關系,并寫出動點P的具體位置和相應的結(jié)論選擇其中一種結(jié)論加以證明13(2013春常熟市期末)已

7、知ABC中,A=60°(1)如圖,ABC、ACB的角平分線交于點D,則BOC=°(2)如圖,ABC、ACB的三等分線分別對應交于O1、O2,則BO2C=°(3)如圖,ABC、ACB的n等分線分別對應交于O1、O2On1(內(nèi)部有n1個點),求BOn1C(用n的代數(shù)式表示)(4)如圖,已知ABC、ACB的n等分線分別對應交于O1、O2On1,若BOn1C=90°,求n的值14(2013春徐州期末)如圖,ABC兩個外角(CAD、ACE)的平分線相交于點P探索P與B有怎樣的數(shù)量關系,并證明你的結(jié)論15(2008春臨川區(qū)校級期末)如圖,BD、CD分別是ABC和AC

8、B的角平分線,BD、CD相交于點D,試探索A與D之間的數(shù)量關系,并證明你的結(jié)論16(2013春工業(yè)園區(qū)期末)如圖,已知ABDE,BF,EF分別平分ABC與CED,若BCE=140°,求BFE的度數(shù)17(2013春海陵區(qū)期末)(1)如圖1的圖形我們把它稱為“8字形”,請說明A+B=C+D;(2)如圖2,ABCD,AP、CP分別平分BAD、BCD,圖2中共有 個“8字形”;若ABC=80°,ADC=38°,求P的度數(shù);(提醒:解決此問題你可以利用圖1的結(jié)論或用其他方法)猜想圖2中P與B+D的數(shù)量關系,并說明理由2016年01月07日liwei的初中數(shù)學組卷參考答案與試

9、題解析一選擇題(共5小題)1(2015春揚中市校級期末)如圖1,一副三角板的兩個直角重疊在一起,A=30°,C=45°COD固定不動,AOB繞著O點逆時針旋轉(zhuǎn)°(0°180° )(1)若AOB繞著O點旋轉(zhuǎn)圖2的位置,若BOD=60°,則AOC=120°;(2)若0°90°,在旋轉(zhuǎn)的過程中BOD+AOC的值會發(fā)生變化嗎?若不變化,請求出這個定值;(3)若90°180°,問題(2)中的結(jié)論還成立嗎?說明理由;(4)將AOB繞點O逆時針旋轉(zhuǎn)度(0°180°),問當為多少度

10、時,兩個三角形至少有一組邊所在直線垂直?(請直接寫出所有答案)【考點】三角形內(nèi)角和定理;三角形的外角性質(zhì);旋轉(zhuǎn)的性質(zhì)菁優(yōu)網(wǎng)版權所有【分析】(1)BOD=60°,AOB旋轉(zhuǎn)了30°(2)若0°90°,AOC=COD+AOD,BOD+AOC=(BOD+AOD)+COD=90°+90°=180°,在旋轉(zhuǎn)的過程中BOD+AOC的值不變化(3)若90°180°,BOD+AOC=360°(COD+AOB)=180°【解答】解:(1)BOD=60°,AOB繞著O點旋轉(zhuǎn)了30°,即

11、AOD=30°,AOC=AOD+COD=30°+90°=120°;(2)若0°90°,AOD=,AOC=COD+AOD,BOD+AOC=(BOD+AOD)+COD=90°+90°=180°,在旋轉(zhuǎn)的過程中BOD+AOC的值不變化,BOD+AOC=180°;(3)若90°180°,問題(2)中的結(jié)論還成立理由:若90°180°,AOB=COD=90°;又BOD+AOC+AOB+COD=360°BOD+AOC=360°AODCOD

12、=360°90°90°=180°;(4)=90°、60°、45°、105°、150°、135°時,兩個三角形至少有一組邊所在直線垂直【點評】本題考查了三角形旋轉(zhuǎn)的性質(zhì),注意旋轉(zhuǎn)角相等,旋轉(zhuǎn)前后的圖形不變2(2014赤峰)如圖1,E是直線AB,CD內(nèi)部一點,ABCD,連接EA,ED(1)探究猜想:若A=30°,D=40°,則AED等于多少度?若A=20°,D=60°,則AED等于多少度?猜想圖1中AED,EAB,EDC的關系并證明你的結(jié)論(2)拓展應用:如圖

13、2,射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域、位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:PEB,PFC,EPF的關系(不要求證明)【考點】平行線的性質(zhì)菁優(yōu)網(wǎng)版權所有【專題】閱讀型;分類討論【分析】(1)根據(jù)圖形猜想得出所求角度數(shù)即可;根據(jù)圖形猜想得出所求角度數(shù)即可;猜想得到三角關系,理由為:延長AE與DC交于F點,由AB與DC平行,利用兩直線平行內(nèi)錯角相等得到一對角相等,再利用外角性質(zhì)及等量代換即可得證;(2)分四個區(qū)域分別找出三個角關系即可【解答】解:(1)AED=70°;AED=80°;猜想:

14、AED=EAB+EDC,證明:延長AE交DC于點F,ABDC,EAB=EFD,AED為EDF的外角,AED=EDF+EFD=EAB+EDC;(2)根據(jù)題意得:點P在區(qū)域時,EPF=360°(PEB+PFC);點P在區(qū)域時,EPF=PEB+PFC;點P在區(qū)域時,EPF=PEBPFC;點P在區(qū)域時,EPF=PFCPEB【點評】此題考查了平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解本題的關鍵3(2013秋微山縣期中)如圖,若DBC=D,BD平分ABC,ABC=50°,則BCD的大小為()A50°B100°C130°D150°【考點】三角形內(nèi)角和定

15、理;角平分線的定義菁優(yōu)網(wǎng)版權所有【分析】根據(jù)角平分線定義求得DBC的度數(shù),再根據(jù)三角形的內(nèi)角和定理即可求解【解答】解:BD平分ABC,ABC=50°,DBC=ABC=25°又DBC=D,BCD=180°25°×2=130°故選C【點評】此題綜合運用了角平分線定義和三角形的內(nèi)角和定理4(2013春連云區(qū)校級月考)如圖,小亮從A點出發(fā)前進10m,向右轉(zhuǎn)15°,再前進10m,又向右轉(zhuǎn)15°,這樣一直走下去,他第一次回到出發(fā)點A時,一共走了米數(shù)是()A120B150C240D360【考點】多邊形內(nèi)角與外角菁優(yōu)網(wǎng)版權所有【專

16、題】計算題【分析】第一次回到出發(fā)點A時,所經(jīng)過的路線正好構(gòu)成一個外角是15度的正多邊形,求得邊數(shù),即可求解【解答】解:360÷15=24,則一共走了24×10=240m故選C【點評】本題考查了正多邊形的外角的計算,第一次回到出發(fā)點A時,所經(jīng)過的路線正好構(gòu)成一個外角是15度的正多邊形是關鍵5如圖,在ABC中,A=42°,ABC和ACB的三等分線分別交于點D,E,則BDC的度數(shù)是()A67°B84°C88°D110°【考點】三角形內(nèi)角和定理菁優(yōu)網(wǎng)版權所有【分析】根據(jù)三角形的內(nèi)角和定理可得ABC+ACB=138°,再由B

17、和C的三等分線可得DBC+DCB,即可求得BDC的度數(shù)【解答】解:A=42°,ABC+ACB=18042=138°,DBC+DCB=×138°=92°,BDC=180°92°=88°故選C【點評】本題考查的是三角形內(nèi)角和定理,求角的度數(shù)常常要用到“三角形的內(nèi)角和是180°這一隱含的條件二填空題(共3小題)6(2007遵義)如圖所示是重疊的兩個直角三角形將其中一個直角三角形沿BC方向平移得到DEF如果AB=8cm,BE=4cm,DH=3cm,則圖中陰影部分面積為26cm2【考點】相似三角形的判定與性質(zhì);平移

18、的性質(zhì)菁優(yōu)網(wǎng)版權所有【專題】壓軸題【分析】根據(jù)平移的性質(zhì)可知:AB=DE,BE=CF;由此可求出EH和CF的長由于CHDF,可得出ECHEFD,根據(jù)相似三角形的對應邊成比例,可求出EC的長已知了EH、EC,DE、EF的長,即可求出ECH和EFD的面積,進而可求出陰影部分的面積【解答】解:由平移的性質(zhì)知,DE=AB=8,CF=BE=4,DEC=B=90°EH=DEDH=5cmHCDFECHEFD=,又BE=CF,EC=,EF=EC+CF=,S陰影=SEFDSECH=DEEFECEH=26cm2【點評】本題考查了相似三角形的判定和性質(zhì)、直角三角形的面積公式和平移的性質(zhì):平移不改變圖形的形

19、狀和大??;經(jīng)過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等7(2013秋和縣期末)如圖,ACD是ABC的外角,ABC的平分線與ACD的平分線交于點A1,A1BC的平分線與A1CD的平分線交于點A2,An1BC的平分線與An1CD的平分線交于點An設A=則:(1)A1=;(2)A2=;(3)An=【考點】三角形內(nèi)角和定理;三角形的外角性質(zhì)菁優(yōu)網(wǎng)版權所有【分析】(1)根據(jù)角平分線的定義可得A1BC=ABC,A1CD=ACD,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得ACD=A+ABC,A1CD=A1BC+A1,整理即可得解;(2)與(1)同理求出A2;(3)根據(jù)求出

20、的結(jié)果,可以發(fā)現(xiàn)后一個角等于前一個角的,根據(jù)此規(guī)律即可得解【解答】(1)解:(1)A1B是ABC的平分線,A1C是ACD的平分線,A1BC=ABC,A1CD=ACD,又ACD=A+ABC,A1CD=A1BC+A1,(A+ABC)=ABC+A1,A1=A,A=,A1=,故答案為:;(2)同理可得A2=A1=,故答案為:;(3)同理可得A2=A1=×=,所以An=故答案為:【點評】本題主要考查了三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),角平分線的定義,熟記性質(zhì)然后推出后一個角是前一個角的一半是解題的關鍵8(2013秋綦江縣校級期中)如圖,在ABC中,已知點D,E,F(xiàn)分別為邊BC

21、,AD,CE的中點,且,則陰影部分的面積等于2cm2【考點】三角形的面積菁優(yōu)網(wǎng)版權所有【分析】如圖,因為點F是CE的中點,所以BEF的底是BEC的底的一半,BEF高等于BEC的高;同理,D、E、分別是BC、AD的中點,EBC與ABC同底,EBC的高是ABC高的一半;利用三角形的等積變換可解答【解答】解:如圖,點F是CE的中點,BEF的底是EF,BEC的底是EC,即EF=EC,高相等;SBEF=SBEC,D、E、分別是BC、AD的中點,同理得,SEBC=SABC,SBEF=SABC,且SABC=8cm2,SBEF=2cm2,即陰影部分的面積為2cm2,故答案是:2cm2【點評】本題主要考查了三角

22、形面積的等積變換:若兩個三角形的高(或底)相等,其中一個三角形的底(或高)是另一三角形的幾倍,那么這個三角形的面積也是另一個三角形面積的幾倍結(jié)合圖形直觀解答三解答題(共9小題)9(2009春江陰市校級月考)一個四邊形截去一個角后就一定是三角形嗎?畫出所有可能的圖形,并分別說出內(nèi)角和和外角和變化情況【考點】多邊形內(nèi)角與外角菁優(yōu)網(wǎng)版權所有【分析】先根據(jù)截去一個角后的圖形是三角形、四邊形或五邊形畫出圖形,再根據(jù)三角形及多邊形的內(nèi)角和定理即可解答【解答】解:鋸掉一個角時可能出現(xiàn)以下幾種情況,如答圖因此剩下的圖形可能是五邊形、四邊形、三角形,內(nèi)角和可能為540°、360°、180&#

23、176;外角和無變化,外角和為360°【點評】此題比較簡單,考查的是多邊形的外角和及內(nèi)角和定理,解答此題時要熟知:(1)任意多邊形的外角和為360°;(2)多邊形的內(nèi)角和=(n2)180°10(2014春相城區(qū)月考)如圖,A=65°,ABD=30°,ACB=72°,且CE平分ACB,求BEC的度數(shù)【考點】三角形內(nèi)角和定理菁優(yōu)網(wǎng)版權所有【專題】幾何圖形問題【分析】先根據(jù)A=65°,ACB=72°得出ABC的度數(shù),再由ABD=30°得出CBD的度數(shù),根據(jù)CE平分ACB得出BCE的度數(shù),根據(jù)BEC=180

24、76;BCECBD即可得出結(jié)論【解答】解:在ABC中,A=65°,ACB=72°ABC=43°ABD=30°CBD=ABCABD=13°CE平分ACBBCE=ACB=36°在BCE中,BEC=180°13°36°=131°故答案為:131°【點評】本題考查的是三角形內(nèi)角和定理,熟知三角形內(nèi)角和是180°是解答此題的關鍵11(2015春建湖縣校級月考)我們知道,任何一個三角形的三條內(nèi)角平分線相交于一點,如圖,若ABC 的三條內(nèi)角平分線相交于點I,過I作DEAI分別交AB、AC于

25、點D、E(1)請你通過畫圖、度量,填寫右上表(圖畫在草稿紙上,并盡量畫準確)(2)從上表中你發(fā)現(xiàn)了BIC與BDI之間有何數(shù)量關系,請寫出來,并說明其中的道理 BAC的度數(shù)40°60°90°120°BIC的度數(shù)BDI的度數(shù)【考點】三角形的角平分線、中線和高;三角形內(nèi)角和定理菁優(yōu)網(wǎng)版權所有【專題】探究型【分析】(1)通過畫圖、度量,即可完成表格;(2)先從上表中發(fā)現(xiàn)BIC=BDI,再分別證明BIC=90°+BAC,BDI=90°+BAC【解答】解:(1)填寫表格如下:BAC的度數(shù)40°60°90°120

26、76;BIC的度數(shù)110° 120° 135°150° BDI的度數(shù)110° 120°135° 150° (2)BIC=BDI,理由如下:ABC的三條內(nèi)角平分線相交于點I,BIC=180°(IBC+ICB)=180°(ABC+ACB)=180°(180°BAC)=90+BAC;AI平分BAC,DAI=DAEDEAI于I,AID=90°BDI=AID+DAI=90°+BACBIC=BDI【點評】本題主要考查了三角形的內(nèi)心的性質(zhì),三角形內(nèi)角和定理、外角的性質(zhì),

27、角平分線的性質(zhì)以及垂線的性質(zhì),比較簡單12(2007福州)如圖,直線ACBD,連接AB,直線AC、BD及線段AB把平面分成、四個部分,規(guī)定:線上各點不屬于任何部分當動點P落在某個部分時,連接PA,PB,構(gòu)成PAC,APB,PBD三個角(提示:有公共端點的兩條重合的射線所組成的角是0°角)(1)當動點P落在第部分時,求證:APB=PAC+PBD;(2)當動點P落在第部分時,APB=PAC+PBD是否成立?(直接回答成立或不成立)(3)當動點P落在第部分時,全面探究PAC,APB,PBD之間的關系,并寫出動點P的具體位置和相應的結(jié)論選擇其中一種結(jié)論加以證明【考點】平行線的性質(zhì);角平分線的

28、性質(zhì)菁優(yōu)網(wǎng)版權所有【專題】動點型;探究型【分析】(1)如圖1,延長BP交直線AC于點E,由ACBD,可知PEA=PBD由APB=PAE+PEA,可知APB=PAC+PBD;(2)過點P作AC的平行線,根據(jù)平行線的性質(zhì)解答;(3)根據(jù)P的不同位置,分三種情況討論【解答】解:(1)解法一:如圖1延長BP交直線AC于點EACBD,PEA=PBDAPB=PAE+PEA,APB=PAC+PBD;解法二:如圖2過點P作FPAC,PAC=APFACBD,F(xiàn)PBDFPB=PBDAPB=APF+FPB=PAC+PBD;解法三:如圖3,ACBD,CAB+ABD=180°,PAC+PAB+PBA+PBD=

29、180°又APB+PBA+PAB=180°,APB=PAC+PBD(2)不成立(3)(a)當動點P在射線BA的右側(cè)時,結(jié)論是:PBD=PAC+APB(b)當動點P在射線BA上,結(jié)論是:PBD=PAC+APB或PAC=PBD+APB或APB=0°,PAC=PBD(任寫一個即可)(c)當動點P在射線BA的左側(cè)時,結(jié)論是PAC=APB+PBD選擇(a)證明:如圖4,連接PA,連接PB交AC于MACBD,PMC=PBD又PMC=PAM+APM(三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和),PBD=PAC+APB選擇(b)證明:如圖5點P在射線BA上,APB=0度ACBD

30、,PBD=PACPBD=PAC+APB或PAC=PBD+APB或APB=0°,PAC=PBD選擇(c)證明:如圖6,連接PA,連接PB交AC于FACBD,PFA=PBDPAC=APF+PFA,PAC=APB+PBD【點評】此題考查了角平分線的性質(zhì);是一道探索性問題,旨在考查同學們對材料的分析研究能力和對平行線及角平分線性質(zhì)的掌握情況認真做好(1)(2)小題,可以為(3)小題提供思路13(2013春常熟市期末)已知ABC中,A=60°(1)如圖,ABC、ACB的角平分線交于點D,則BOC=120°(2)如圖,ABC、ACB的三等分線分別對應交于O1、O2,則BO2C

31、=100°(3)如圖,ABC、ACB的n等分線分別對應交于O1、O2On1(內(nèi)部有n1個點),求BOn1C(用n的代數(shù)式表示)(4)如圖,已知ABC、ACB的n等分線分別對應交于O1、O2On1,若BOn1C=90°,求n的值【考點】三角形內(nèi)角和定理;三角形的外角性質(zhì)菁優(yōu)網(wǎng)版權所有【專題】規(guī)律型【分析】(1)先根據(jù)三角形內(nèi)角和定理求得ABC+ACB,再根據(jù)角平分線的定義求得OBC+OCB,即可求出BOC(2)先根據(jù)三角形內(nèi)角和定理求得ABC+ACB,再根據(jù)三等分線的定義求得O2BC+O2CB,即可求出BO2C(3)先根據(jù)三角形內(nèi)角和定理求得ABC+ACB,再根據(jù)n等分線的定

32、義求得On1BC+On1CB,即可求出BOn1C(4)依據(jù)(3)的結(jié)論即可求出n的值【解答】解:BAC=60°,ABC+ACB=120°,(1)點O是ABC與ACB的角平分線的交點,OBC+OCB=(ABC+ACB)=60°,BOC=120°;(2)點O2是ABC與ACB的三等分線的交點,O2BC+O2CB=(ABC+ACB)=80°,BO2C=100°;(3)點On1是ABC與ACB的n等分線的交點,On1BC+On1CB=(ABC+ACB)=×120°,BOn1C=180°×120°

33、;=(1+)×60°;(4)由(3)得:(1+)×60°=90°,解得:n=4【點評】此題練習角的等分線的性質(zhì)以及三角形內(nèi)角和定理根據(jù)題意找出規(guī)律是解題的關鍵14(2013春徐州期末)如圖,ABC兩個外角(CAD、ACE)的平分線相交于點P探索P與B有怎樣的數(shù)量關系,并證明你的結(jié)論【考點】三角形內(nèi)角和定理;三角形的外角性質(zhì)菁優(yōu)網(wǎng)版權所有【分析】根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和與角平分線的定義表示出PAC和PCA,再根據(jù)三角形的內(nèi)角和定理列式整理即可得解【解答】解:由三角形的外角性質(zhì),DAC=B+ACB,ACE=B+BAC,PA、

34、PC分別是DAC和ACE的角平分線,PAC=DAC=(B+ACB),PCA=ACE=(B+BAC),在ACP中,P+PAC+PCA=180°,P+(B+ACB)+(B+BAC)=180°,2P+B+ACB+B+BAC=360°,在ABC中,ACB+B+BAC=180°,2P+B=180°,9、淡水是我們?nèi)祟惡推渌锷娴谋匦杵?,但是地球上的淡水資源十分有限,地球上的多數(shù)地區(qū)缺水。P=90°B【點評】本題考查了三角形的內(nèi)角和定理,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)與定理并準確識圖是解題的關鍵,整體思想的利用也

35、很關鍵一、填空:答:水分和氧氣是使鐵容易生銹的原因。15(2008春臨川區(qū)校級期末)如圖,BD、CD分別是ABC和ACB的角平分線,BD、CD相交于點D,試探索A與D之間的數(shù)量關系,并證明你的結(jié)論【考點】三角形內(nèi)角和定理;角平分線的定義菁優(yōu)網(wǎng)版權所有【專題】探究型3、除了我們?nèi)粘I町a(chǎn)生的家庭垃圾外,工廠、學校、醫(yī)院、建筑工地等每天也在產(chǎn)生大量的垃圾?!痉治觥肯雀鶕?jù)角平分線的性質(zhì)求出DBC、DCB與A的關系,再根據(jù)三角形內(nèi)角和定理求解即可【解答】解:BD、CD是ABC和ACB的角平分線,16、在北部天空的小熊座上有著名的北極星,可以借助大熊座比較容易地找到北極星。黑夜可以用北極星辨認方向。DB

36、C=ABC,DCB=ACB,11、月食:當?shù)厍蜣D(zhuǎn)到月球和太陽的中間,太陽、地球、月球大致排成一條直線時,地球就會擋住太陽射向月球的光,這時在地球上的人就只能看到月球的一部分或全部看不到,于是就發(fā)生了月食。ABC+ACB=180°A,BDC=180°DBCDCB=180°(ABC+ACB)=180°(180°A)=90°+A,4、填埋場在填滿垃圾以后,可以在上面修建公園、體育場、但是不能用來建筑房屋和種植莊稼。BDC=90°+A【點評】本題考查的是角平分線的性質(zhì)及三角形內(nèi)角和定理三角形內(nèi)角和定理:三角形的內(nèi)角和為180°16(2013春工業(yè)園區(qū)期末)如圖,已知ABDE,BF,EF分別平分ABC與CED,若BCE=140°,求BFE的度數(shù)1、世界是由物質(zhì)構(gòu)成的。我們身邊的書、橡皮、電燈、大樹、動物、植物包括我們自己都是由物質(zhì)構(gòu)成的。10、由于人口迅速增長、環(huán)境污染和全球氣候變暖,世界人均供水量自1970年以來開始減少,而且持續(xù)下降。【考點】平行線的性質(zhì);角平分線的定義菁優(yōu)網(wǎng)版權所有【專題】計算題答:盡可能地不使用一次性用品;延長物品的使用壽命;包裝盒紙在垃圾中比例很大,購物時減少對它們的使用。【分析】過點C作CPAB,然后利用兩直線平行,內(nèi)錯角相等得到ABC+CED=BCP+E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論