




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、儲油罐的變?yōu)樽R別與灌容表標定目錄儲油罐的變?yōu)樽R別與灌容表標定1目錄1摘 要2一 問題的提出3二 符號說明3三 模型的假設4四 問題分析4五 模型的建立及求解51.問題一51.1未變位的橢圓球體51.2變位后的橢圓球體71.3用已經(jīng)建立的模型研究罐體變位后對灌容表的影響。91.4計算油位高度為1cm的灌容表標定值102.問題二112.1確定儲油量與儲油高度及變位參數(shù)的關系11六模型的檢驗14七模型改進方向15參考文獻15 摘 要 加油站的地下儲油罐使用一段時間后會發(fā)生變位,針對這個問題,我們建立了數(shù)學模型,并利用matlab和mathmatica等軟件對其進行求解,得到了儲油罐的變位后對灌容表的
2、影響和對變位后的罐容量重新標定。問題一,我們先針對儲油罐變位前后分別對體積其建立數(shù)學積分模型,用數(shù)值積分求得模型,然后用附表一中的有無變位進油中所得的油位高度分別代入兩個模型求得體積與附表一相對應的累加進油量和灌內容量初始值之和相差不大,說明我們建立的模型可以接受。用這兩個模型變位前后的曲線,發(fā)現(xiàn)變位后的油罐灌容表測得高度值偏大,致使測得容量值與實際值相比偏小。根據(jù)誤差分析對模型進行修正并檢驗,并利用變位后的修正模型模型給出了間隔1cm的灌容表標定值。問題二,以圓柱體為主體,兩邊是兩個球冠體的儲油罐發(fā)生橫向偏移和縱向偏移之,首先分析儲油罐橫向偏轉對油位探針測量的高度的影響,儲油罐發(fā)生縱向傾斜對
3、任意位置油面的高度的影響。把該儲油罐分成中間部分和左右兩個球冠體,然后針對儲油罐變位后分別對三部分建立數(shù)學積分模型,得出油罐中油的體積與油位探針測量的高度的積分關系,比較復雜不易求解,從而對模型進行簡化,得到了灌內儲油量與油位高度及變位參數(shù)和的關系,通過待定系數(shù)法確定了變位參數(shù)的值。用該模型給出了間隔油位高度間隔10cm的灌容表標定值。通過相對誤差檢驗得k<3%,則模型較好方法是可靠的。關鍵詞:積分模型 數(shù)值積分 模型簡化 matlab mathmatica一 問題的提出一般情況下,加油站都有若干個地下儲油罐,并且都有與他們配套的“油位計量管理系統(tǒng)”,采用流量計和油位計來測量進出油量與灌
4、內油位高度,通過預先標定的灌容表對儲油罐進行計算,從而得到儲油罐內油位高度和儲油量的變化情況。 然而許多儲油罐使用一段時間后,由于地基變形等原因,常常使儲油罐的位置發(fā)生橫向和縱向的變化(通常稱為變位)。變位之后的灌容表會發(fā)生改變。因此,我們要對灌容表進行重新標定。 問題一 為了掌握罐體變位后對灌容表的影響,利用題中所給的小橢圓儲油罐(兩端平頭的橢圓柱體),分別對罐體無變位和傾斜角為的縱向變位兩種情況做了實驗,并給出附件一,請建立數(shù)學模型研究罐體變位后對灌容表的影響,并給出罐體變位后油位高度間隔為1cm的灌容表標定值。 問題二 對于題中給定的實際儲油灌,試建立罐體變位后標定灌容表的數(shù)學模型,即灌
5、內儲油量與油位高度及變位參數(shù)(縱向傾斜角度和橫向傾斜角度)之間的一般關系。請利用罐體變位后在進出油過程中的實際檢測數(shù)據(jù)(題出給出的附表二),根據(jù)你們所建立的數(shù)學模型確定變位參數(shù),并給出罐體變位后油位高度間隔為10cm的灌容表標定值。進一步利用所給的附件二中的實際檢測數(shù)據(jù)來分析檢驗你們模型的正確性與方法的正確性。二 符號說明罐體的縱向變位傾斜角;罐體的橫向變位傾斜角;建立的坐標系橫軸變量;建立的坐標系縱軸變量;問題一中傾斜后油面高度坐標值;橢圓截面的長半軸長;橢圓截面的短半軸長;問題一中未變位前小橢圓體里不同高度下油的體積;問題一中變位后小橢圓體里不同高度下油的體積;問題一中探針的實際測定值;問
6、題一中儲油罐橢圓體的長;問題二中探針檢測到的高度值;問題二中油面的實際高度值;在固定檢測高度下,不同位置油面的實際高度值;問題二中球罐體中間圓柱體里油量的體積;問題二儲油罐中圓柱體的長;傾斜后左端球罐體油面到底部圓面的距離;傾斜后右端球罐體油面到底部圓面的距離;儲油罐里球冠半徑;圓柱體部分正截面的內徑問題二中儲油罐任意正截面的半徑;問題二中油面實際高度;在某一油面測定值時,不同位置的右面的坐標高度;左球冠內任意位置油面到左球冠面的垂直距離球冠內任意截面半徑右球冠里裝有油量的容積;左球冠里裝有量的容量;儲油罐內油的總體積;儲油罐正截面裝有油部分的面積;球冠體在不同半徑下的正截面的半徑; 三 模型
7、的假設1.當油位探針測量時油面是靜態(tài)的,測量的值不再變化。2.儲油罐油罐都是光滑的,圓柱體、球冠體、橢圓體都是標準的幾何體。3.不能忽略注油管里油的體積。4.油位探測裝置與儲油罐之間的相對位置保持不變。5.油位探測裝置看做在一個平面內。四 問題分析 通過用數(shù)學模型來幫助解決地下儲油罐灌容表標定問題,得到灌內油位高度與儲油量的準確關系,便于適時向油罐添加油量。在問題一中,根據(jù)題意要研究儲油罐變位后對灌容表的影響,我們首先要建立儲油罐未變位之前的數(shù)學模型,由題給出可以知道該儲油罐是一個臥式的兩端平頭的橢圓柱體。那么當我們知道高度時,用數(shù)學積分的思想,用切片法很容易對該儲油罐里的油進行積分。然后將得
8、出的數(shù)據(jù)與已經(jīng)給出數(shù)據(jù)分別進行擬合成一條曲線,比較模型是否合理。第二步,我們要算出當儲油罐縱向傾角為時對灌容表的影響。當儲油罐縱向傾斜時,油面相對于儲油罐底部也是傾斜的。這樣我們我們應該以油罐底部長軸為橫坐標,建立坐標系,找到測得的高度和儲油罐相應實際高度的關系。然后用數(shù)學積分建立該模型。用該模型所得的數(shù)據(jù)擬合曲線與附表一中變位后的數(shù)據(jù)擬合的曲線比較所建模型是否合理,合理之后,我們就可以進一步用matlab算出變位后油位高度間隔1cm的灌容表的標定值。在問題二中,給出的是中部是圓柱體,兩端為球罐體的圖,當該油罐體發(fā)生橫向傾斜后將使標尺也發(fā)生相對變化。使油浮子測出的測量高度值與實際值不等,那么我
9、們要先求出油面里油的真實高度。然后將該橢圓球體分成三個部分,橢圓球體中間的圓柱體,兩端部分的球冠體。求這三部分的體積之和就可以得到灌容表儲油量與油位高度及變位參數(shù)(和)之間的關系,然后我們通過待定系數(shù)的方法確定變位參數(shù)。用該模型可以得出間隔10cm的灌容表標定值。五 模型的建立及求解1.問題一1.1未變位的橢圓球體由題意我們知道了該儲油罐是兩端平頭的橢圓柱體。這樣根據(jù)上題提到的分析,我們首先要針對未傾斜的儲油罐進行建立積分模型,我們以橢圓柱體的左截面中心為原點,以橢圓柱體的高的方向為z軸,以橢圓截面的長軸y軸,建立該橢圓體的橫截面如圖1 圖1所以我們可以得到橢圓體橫截面的橢圓曲線方程 (1)由
10、公式1可以推出我們以靜態(tài)的油面為平面,該面積為,對高度h進行積分,既可以得到未傾斜的儲油罐的油量的體積: (2)經(jīng)化簡得: (3)(其中的值根據(jù)已知條件為,)根據(jù)公式3,和附表一的數(shù)值我們用matlab軟件編程(附錄程序1)得到對應未變位之前做三條差值擬合曲線來驗證我們模型的可靠性。第一條曲線,如下圖紅線1,我們用公式3和附表一中儲油罐里油量高度的關系擬合出第一條曲線;第二條曲線,用附表一中給出的累計容量加上原來的初始容量得到的容積內的體積,用該體積與容積內高度的關系,擬合出實際測量值曲線;第三條曲線,我們用第一條曲線的體積減去第二條曲線的體積得到誤差體積和體積內有高度的對應關系擬合出第三條曲
11、線。如下圖2所示圖2由圖2我們可以直觀地看出所測的實際值與真實值隨著測量高度的增大,出現(xiàn)差值也增大。當我們分析了干擾了因素,我們即可得到下圖的重合曲線。我們認為該模型合理。修正后的高度h與體積v的關系圖31.2變位后的橢圓球體變位后的油面相對于小橢圓的中心線發(fā)生傾斜,不能一次性積分,這樣我們建立的坐標系軸要與小橢圓的中心線重合,y軸和軸的坐標系建立如圖1所示,下圖為小橢圓油罐正面坐標圖4;圖4由公式1我們知道, 我們得到該傾斜的體積公式為 (4)其中與h的關系 (5)通過化簡 我們將分成兩部分。所以, (6) (7)令同理可得 (8) 令,;得經(jīng)過化簡得出結果為(其中,把的原值代入,然后用ma
12、thmatica解出附件一表中給出高度對應的值。因為計算過程比較復雜,為方便理解,下面是該算法的簡單流程圖。如圖5;圖5橢圓體體積v2與h關系v2與H關系v2v2換元積分v2換元積分v2換回元v2與H的關系擬合出曲線H與h的關系為檢查我們所建模型的合理性,我們和上題的思路一樣,我們用matlab編程(附錄程序2)擬合出三條曲線,第一條曲線為我們計算得到與附件一表中的變位之后累積進油量各個高度的圖;第二條為附件1表中變位之后的體積和各個高度的擬合曲線圖;第三條為我們得到的第一條曲線減去第二條曲線的差值與附件1中各個高度之間的擬合曲線圖。如圖6。圖6由圖我們可以知道,我們的模型和變位后檢測的數(shù)據(jù)相
13、差不大,其中的上面的線(紅線)為變位后擬合出的曲線圖,下面的圖(藍線)為根據(jù)附件表一中的數(shù)據(jù)累積的體積與對應高度的曲線圖,最下面的綠線表示在同高度下變位后我們擬合出的曲線圖與通過試驗檢測的數(shù)據(jù)差值得到的曲線圖。從上圖可以看出變位后的通過實驗得到的數(shù)據(jù)與擬合出的數(shù)據(jù)相差一個常數(shù),這可能是有個干擾因素如探針油管的體積干擾。當我們排除這個影響因素之后,在擬合三條曲線,可以得到如圖7,我們看出由建立的模型和原始數(shù)據(jù)沒差別,說明我們建立的模型是合理的。圖7說明我們的模型可以利用對變位后灌容表進行標定。1.3用已經(jīng)建立的模型研究罐體變位后對灌容表的影響。針對儲油罐變位前后的我們用matlab編程(附錄程序
14、3)選定同一組高度數(shù)據(jù),分別用插值出一組數(shù)據(jù),用該數(shù)據(jù)擬合出變位前后這兩條曲線,比較變位后對灌容表的影響如圖8。 圖8為變位前后用自己模型的曲線圖(其中曲線圖為未變位之前的曲線,為變位之后的曲線圖)根據(jù)圖8我們可以得出結論變位后的灌容標標定值與未變位前同等高度時相比變小了。1.4計算油位高度為1cm的灌容表標定值用變位后的體積公式和高度的關系進行插值計算,把步長設為1cm,用matlab編程(附錄四)可以得到一組數(shù)據(jù),其數(shù)據(jù)如下表1所示。表1為變位后油位高度間隔1cm的灌容表標定值累加進油量/L油位高度/mm累加進油量/L油位高度/mm累加進油量/L油位高度/mm累加進油量/L油位高度/mm4
15、10929.95701593.47302285.78902955.1420969.55801636.37402328.790029954301009.45901679.47502371.79103034.54401049.66001722.57602414.59203073.74501090.16101765.87702457.29303112.54601130.96201809.17802499.894031514701171.96301852.47902542.295031894801213.26401895.88002584.59603226.74901254.76501939.1810
16、2626.59703263.95001296.46601982.68202668.49803300.75101338.367020268302710.199033375201380.46802069.38402751.610003372.85301422.76902112.78502792.810103408.15401465.270021568602833.810203442.85501507.87102199.38702874.5103034775601550.57202242.588029152.問題二2.1確定儲油量與儲油高度及變位參數(shù)的關系有題可知儲油罐變位(橫向偏轉和縱向傾斜)后標
17、定罐容表發(fā)生變化。首先算出儲油罐兩端球冠的半徑,經(jīng)分析把儲油罐分為三部分進行計算。其次分析儲油罐橫向偏轉對油位探針測量的高度的影響,即探針所在截面的油面的真實高度與油位探針測量的高度的關系;儲油罐發(fā)生縱向傾斜對任意位置油面的高度的影響,即任意位置油面的高度與探針所在截面油面的真實高度的關系。再次分別分析儲油罐圓柱體部分、左球冠和右球冠。最后得出儲油罐油的體積與測量高度的關系。 圖9 圖10 建立直角坐標系,以儲油罐的中心線為x軸,球冠與圓柱體交面的圓的圓心為原點,以垂直水平面的直線為y軸建立如圖9所示的直角坐標系。球冠正投影于該坐標系上如圖9所示。由題干我們能知道OA=OC=1.5m, OB=
18、1m,通過上圖依勾股定理計算可以知道兩端球灌體半徑R。 m畫油罐橫向偏轉分析圖如圖10,其中圓為油罐內截面,DE為油面,AC為油位探針,F(xiàn)為儲油罐的頂點,G為儲油罐的最低點,O為圓心,OC為截面半徑,儲油罐橫向偏角為,AB平行FG,BC平行DE。則探針所在截面的油面的真實高度為IG,油位探針測量的高度為JC,這樣可以分析出實際的檢測值與真實值之間的關系, (9)當油罐體發(fā)生縱向傾斜時,畫油罐縱向傾斜分析圖如圖11所示,以儲油罐的中心線為x軸,左球冠與圓柱體交面的圓的圓心為原點,以垂直水平面的直線為y軸建立如圖所示的直角坐標系。其中為探針所在截面油面的真實高度,為任意位置油面的高度,為任意位置油
19、面高度的坐標。 圖11 圖12通過圖11可以得到任意位置油面的高度與探針所在截面油面的真實高度的關系式為,任意位置油面高度的坐標與任意位置油面的高度的關系式為。分析儲油罐中間圓柱體部分,取圓柱體任意正截面,以圓心為原點,在該截面上以水平線為y軸,以垂直水平面為z軸,建立如圖12所示直角坐標系,其中AB為該截面油面高度,該圓半徑,圓的方程為。由問題一可得出該截面的裝有油部分的面積為S= (10)進而得到變位后儲油罐圓柱體部分油的體積與油位探針測量的高度的關系式分析儲油罐右球冠部分,以儲油罐的中心線為x軸,球冠與圓柱體交面的圓的圓心為原點,以垂直水平面的直線為y軸建立如圖13所示的直角坐標系。由圖
20、可求出右球冠內任意位置油面到右球冠面的垂直距離,球冠內任意位置對應的截面半徑為。 (11)由上可得右球冠內油的體積與油位探針測量的高度的關系式 (12)其中分析儲油罐左球冠部分,分析過程同右球冠。可得左球冠內油的體積與油位探針測量的高度的關系式 (13)其中綜上所述,儲油罐內油的總體積與油位探針測量的高度的關系式 (14)建立的該模型比較復雜,求解困難,對該模型進行如下簡化改進。同樣將儲油罐分成上述三部分,即儲油罐圓柱體部分、左球冠和右球冠。分析如下:首先對圓進行分析,每個圓有一個外接正方形,研究他們之間的面積關系,建立直角坐標系,如圖14,圓心在y軸上,與x軸相切的圓,有圓外接正方形ABCD
21、。圖13 圖140<x<2R/3所對應的下半圓弧與x軸和x=2R/3圍成的面積,圓的面積為有分析可得對來說可以忽略故可簡化如下,如下圖15, 圖15簡化如下,IJ為任意截面油面水平線,則該截面的裝有油部分的面積簡化為矩形IJCD的面積減去由劣弧HG和直線HD、DG圍成的面積,再減去劣弧FG和直線GC、FC圍成的面積。其中,。由上簡化的公式可以將變位后儲油罐圓柱體部分油的體積與油位探針測量的高度的關系式簡化為: (16)其中,同理簡化可得左右球冠油的體積與油位探針測量的高度簡化關系式為:所以儲油罐內油的總體積與油位探針測量的高度的關系式 (17)很明顯,我們可以看出油罐體中油量的體積
22、與測出的高度是一次函數(shù)關系,因此可以擬合出與的關系用附件表二中一次補充前的數(shù)據(jù)進行擬合得到關系式為。用待定系數(shù)法求得模型中,的值分別為。得到的模型為從而根據(jù)模型得到罐體變位后油位高度間隔10cm的灌容表標定值。如下表2表2罐體變位后油位高度間隔10cm的灌容表標定值顯示油高/mm顯示油量容積/L顯示油高/mm顯示油量容積/L顯示油高/mm顯示油量容積/L400323.512002434.920004546.3500587.513002698.921004810.3600851.414002962.822005074.27001115.315003226.723005338.18001379.2
23、16003490.6240056029001643.217003754.625005865.910001907.118004018.526006129.91100217119004282.427006393.8六模型的檢驗附件表二中一次性補充進油后數(shù)據(jù)中顯示高度代入模型求得一組新的模型數(shù)據(jù) 相鄰之差與附件表二中對應的一次性補充進油后數(shù)據(jù)中每次出油量 進行相對誤差檢驗:可以看出k<3%,可以得出我們是正確的,方法是可靠的。七模型改進方向本模型只在簡化模型的情況下計算的,但在實際的問題中,情況更加復雜,考慮的應該更多。此模型在簡化時候的忽略了一些很小的體積部分,盡管在數(shù)量級上很小,但也影響模
24、型的準確性。參考文獻1 田立平,謝斌,微積分,機械工業(yè)出版社,2005,102 管冀年,趙海,臥式儲油罐罐內油品體積標定的實用方法,張掖市計量測試檢定所.2004,023 田鐵軍,傾斜臥式罐直圓筒部分的容積計算,19994 周品,趙新芬, MATLAB數(shù)學建模與仿真,國防工業(yè)出版社,2009,45 陸志奇,李靜,競爭數(shù)學模型的理論研究,科學出版社,2008,76 姜起源,謝金星,葉俊,數(shù)學模型,高等教育出版社,2003,87 董臻圃,數(shù)學建模方法與實踐,國防工業(yè)出版社,2006,88 錢銘,袁淵,學會抽象與建模,大連理工大學出版社,2009,8附錄程序一%程序一無變位進油中累加進油量數(shù)據(jù)分別加
25、上罐內初始值262升得v;v=3123624124625125626126627127628128629129621012106211121162121212621312136214121462151215621612166217121762181218621912196220122062211221622212226223122315.832365.832367.062417.062467.062517.062567.062617.062666.982668.832718.832768.832818.832868.832918.832968.833018.833068.833118.8331
26、68.833168.913218.913268.913318.913368.913418.913468.913518.913568.913618.913668.913718.913768.913818.913868.913918.913968.91;%程序一無變位進油中h的數(shù)據(jù);h=159.02176.14192.59208.5223.93238.97253.66268.04282.16296.03309.69323.15336.44349.57362.56375.42388.16400.79413.32425.76438.12450.4462.62474.78486.89498.95510.
27、97522.95534.9546.82558.72570.61582.48594.35606.22618.09629.96641.85653.75665.67677.63678.54690.53690.82702.85714.91727.03739.19751.42763.7764.16776.53788.99801.54814.19826.95839.83852.84866879.32892.82892.84906.53920.45934.61949.05963.8978.91994.431010.431026.991044.251062.371081.591102.331125.32115
28、2.361193.49;%將毫米為的單位轉化為米為單位;h1=h./1000;%建模所得小儲油罐內油的體積v與油面高度h的關系;V=(1.78/1.2)*2.45*(h1-0.6).*(sqrt(h1.*(1.2-h1)+0.36*asin (h1/0.6-1)+0.5*pi*0.36);%建模所得小儲油罐內油的體積v與實際體積之差;v2=V-v./1000;%畫出已知數(shù)據(jù)體積v與h的曲線,和建立的數(shù)學模型的曲線,和兩者的誤差曲線;plot(h/1000,v/1000,h1,V,'r',h1,v2);ylabel('體積V/m3')xlabel('高度H
29、/m')程序二:%附表一傾斜變位進油中油位高度數(shù)據(jù)并將毫米為的單位轉化為米為單位得h1;h1=0.41129,0.42345,0.43833,0.45054,0.4639,0.47774,0.48937,0.50256,0.51469,0.52684,0.53888,0.55196,0.5644,0.57656,0.58874,0.59956,0.61162,0.62344,0.63558,0.64628,0.65859,0.67022,0.68063,0.69303,0.70467,0.71645,0.72766,0.73939,0.7509,0.76155,0.77343,0.78
30、539,0.79604,0.80827,0.8208,0.8328,0.84447,0.85629,0.8676,0.88006,0.89292,0.90434,0.91734,0.9299,0.94142,0.9546,0.96809,0.98014,0.99241,1.00634,1.01907,1.03424,1.03536 ;%程序一傾斜變位進油中累加進油量數(shù)據(jù)分別加上罐內初始值215升并將升為的單位轉化為立方米為單位得v1;v1=0.96286,1.01286,1.06286,1.11286,1.16286,1.21286,1.26286,1.31279,1.36279,1.4127
31、3,1.46273,1.51273,1.56273,1.61273,1.66273,1.71273,1.76273,1.81273,1.86273,1.91273,1.96273,2.01273,2.06273,2.11273,2.16273,2.21273,2.26273,2.31273,2.36273,2.41273,2.46273,2.51273,2.56273,2.61273,2.66273,2.71273,2.76273,2.81273,2.86273,2.91273,2.96273,3.01273,3.06273,3.11273,3.16273,3.21273,3.26273,3.
32、31273,3.36273,3.41273,3.46273,3.51273,3.51474;%小儲油罐橫截面橢圓的長半軸長a=0.89;%小儲油罐橫截面橢圓的短半軸長b=0.6;%小儲油罐的長度l=2.45;c=tan (4.1*pi)/180);d=h1+0.4.*c-b;c1=c./b;m=d./b;%建模所得小儲油罐內油的體積v與油面高度h1的關系;v=(a./b).*(1./(3.*c).*(b.2-(d-c.*l).2).(3/2)-(b.2-d.2).(3/2)+(b.2).*(-(1-m.2+2.*c1.*m.*l.-(c1.2).*(l.2).(1/2)+(l.*c1-m).*
33、(asin (m-c1.*l)+(1-m.2).(1/2)+m.*(asin (m)./c1)+0.5.*pi.*b.*b.*l);%建模所得小儲油罐內油的體積v與實際體積之差;v2=v-v1;%畫出已知數(shù)據(jù)體積v與h的曲線,和建立的數(shù)學模型的曲線,和兩者的誤差曲線;plot (h1,v,'r',h1,v1,h1,v2);ylabel ('體積V/m3')xlabel ('高度H/m')sum(v2)/length(v2)程序三:%程序一無變位進油中累加進油量數(shù)據(jù)分別加上罐內初始值262升得v;v=3123624124625125626126627127628128629129621012106211121162121212621312136214121462151215621612166217121762181218621912196220122062211221622212226223122315.832365.832367.062417.062467.062517.062567.062617.062666.982668.832718.832768.832818.832868.832918.832968.833018.833068.833118.833168.83316
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2020-2025年中國西瓜行業(yè)市場運營現(xiàn)狀及投資規(guī)劃研究建議報告
- 中國HA復合型髖柄行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告(2024-2030)
- 寵物食品生產(chǎn)合作合同
- 基于人工智能的智能物流配送系統(tǒng)協(xié)議
- 電子產(chǎn)品銷售與質量保證合同
- 2025年隔墻用輕鋼龍骨市場調研報告
- 中國荷葉外墻漆行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告(2024-2030)
- 中國木纖板行業(yè)市場全景監(jiān)測及投資前景展望報告
- 2020-2025年中國煉油化工設備行業(yè)市場深度分析及發(fā)展前景預測報告
- 商業(yè)項目承包與施工合同
- 機械制圖教案(完整版)
- 工業(yè)互聯(lián)網(wǎng)與智能制造
- 司母戊鼎的介紹
- 肺炎衣原體醫(yī)學課件
- 2024年兒童童車行業(yè)分析報告及未來發(fā)展趨勢
- 23秋國家開放大學《漢語基礎》期末大作業(yè)(課程論文)參考答案
- 《公務接待》課件
- 中醫(yī)內科學消渴課件
- 《新能源汽車動力電池及管理系統(tǒng)檢修》 課件 模塊3 新能源汽車動力電池PACK檢修
- 工藝知識培訓課件
- 公司關停并轉方案
評論
0/150
提交評論