版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上現(xiàn)代控制理論知識(shí)點(diǎn)復(fù)習(xí)專(zhuān)心-專(zhuān)注-專(zhuān)業(yè)第一章 控制系統(tǒng)的狀態(tài)空間表達(dá)式 狀態(tài)空間表達(dá)式n階 A稱(chēng)為系統(tǒng)矩陣,描述系統(tǒng)內(nèi)部狀態(tài)之間的聯(lián)系;為輸入(或控制)矩陣,表示輸入對(duì)每個(gè)狀態(tài)變量的作用情況;C輸出矩陣,表示輸出與每個(gè)狀態(tài)變量間的組成關(guān)系,D直接傳遞矩陣,表示輸入對(duì)輸出的直接傳遞關(guān)系。 狀態(tài)空間描述的特點(diǎn)考慮了“輸入狀態(tài)輸出”這一過(guò)程,它揭示了問(wèn)題的本質(zhì),即輸入引起了狀態(tài)的變化,而狀態(tài)決定了輸出。狀態(tài)方程和輸出方程都是運(yùn)動(dòng)方程。狀態(tài)變量個(gè)數(shù)等于系統(tǒng)包含的獨(dú)立貯能元件的個(gè)數(shù),n階系統(tǒng)有n個(gè)狀態(tài)變量可以選擇。狀態(tài)變量的選擇不唯一。從便于控制系統(tǒng)的構(gòu)成來(lái)說(shuō),把狀態(tài)變量選為可
2、測(cè)量或可觀(guān)察的量更為合適。建立狀態(tài)空間描述的步驟:a選擇狀態(tài)變量;b列寫(xiě)微分方程并化為狀態(tài)變量的一階微分方程組;c將一階微分方程組化為向量矩陣形式,即為狀態(tài)空間描述。狀態(tài)空間分析法是時(shí)域內(nèi)的一種矩陣運(yùn)算方法,特別適合于用計(jì)算機(jī)計(jì)算。 模擬結(jié)構(gòu)圖(積分器加法器比例器)已知狀態(tài)空間描述,繪制模擬結(jié)構(gòu)圖的步驟:積分器的數(shù)目應(yīng)等于狀態(tài)變量數(shù),將他們畫(huà)在適當(dāng)?shù)奈恢?,每個(gè)積分器的輸出表示相應(yīng)的某個(gè)狀態(tài)變量,然后根據(jù)狀態(tài)空間表達(dá)式畫(huà)出相應(yīng)的加法器和比例器,最后用箭頭將這些元件連接起來(lái)。 狀態(tài)空間表達(dá)式的建立 由系統(tǒng)框圖建立狀態(tài)空間表達(dá)式:a將各個(gè)環(huán)節(jié)(放大、積分、慣性等)變成相應(yīng)的模擬結(jié)構(gòu)圖;b每個(gè)積分器的
3、輸出選作,輸入則為;c由模擬圖寫(xiě)出狀態(tài)方程和輸出方程。 由系統(tǒng)的機(jī)理出發(fā)建立狀態(tài)空間表達(dá)式:如電路系統(tǒng)。通常選電容上的電壓和電感上的電流作為狀態(tài)變量。利用KVL和KCL列微分方程,整理。由描述系統(tǒng)的輸入輸出動(dòng)態(tài)方程式(微分方程)或傳遞函數(shù),建立系統(tǒng)的狀態(tài)空間表達(dá)式,即實(shí)現(xiàn)問(wèn)題。實(shí)現(xiàn)是非唯一的。方法:微分方程系統(tǒng)函數(shù)模擬結(jié)構(gòu)圖狀態(tài)空間表達(dá)式。注意:a如果系統(tǒng)函數(shù)分子冪次等于分母冪次,首先化成真分式形式,然后再繼續(xù)其他工作。 b模擬結(jié)構(gòu)圖的等效。如前饋點(diǎn)等效移到綜合反饋點(diǎn)之前。 c對(duì)多輸入多輸出微分方程的實(shí)現(xiàn),也可以先畫(huà)出模擬結(jié)構(gòu)圖。5狀態(tài)矢量的線(xiàn)性變換。也說(shuō)明了狀態(tài)空間表達(dá)的非唯一性。不改變系統(tǒng)
4、的特征值。特征多項(xiàng)式的系數(shù)也是系統(tǒng)的不變量。特征矢量的求解:也就是求的非零解。狀態(tài)空間表達(dá)式變換為約旦標(biāo)準(zhǔn)型(為任意矩陣):主要是要先求出變換矩陣。a互異根時(shí),各特征矢量按列排。b有重根時(shí),設(shè)3階系統(tǒng),為單根,對(duì)特征矢量,求法與前面相同, 稱(chēng)作的廣義特征矢量,應(yīng)滿(mǎn)足。系統(tǒng)的并聯(lián)實(shí)現(xiàn):特征根互異;有重根。方法:系統(tǒng)函數(shù)部分分式展開(kāi)模擬結(jié)構(gòu)圖狀態(tài)空間表達(dá)式。6由狀態(tài)空間表達(dá)式求傳遞函數(shù)陣的矩陣函數(shù)表示第j個(gè)輸入對(duì)第i個(gè)輸出的傳遞關(guān)系。狀態(tài)空間表達(dá)式不唯一,但系統(tǒng)的傳遞函數(shù)陣是不變的。子系統(tǒng)的并聯(lián)、串聯(lián)、反饋連接時(shí),對(duì)應(yīng)的狀態(tài)空間表達(dá)及傳遞函數(shù)陣。方法:畫(huà)出系統(tǒng)結(jié)構(gòu)圖,理清關(guān)系,用分塊矩陣表示。第二
5、章 控制系統(tǒng)狀態(tài)空間表達(dá)式的解一線(xiàn)性定常系統(tǒng)齊次狀態(tài)方程()的解:二矩陣指數(shù)函數(shù)狀態(tài)轉(zhuǎn)移矩陣1表示到的轉(zhuǎn)移。5個(gè)基本性質(zhì)。2的計(jì)算:a定義;b變換為約旦標(biāo)準(zhǔn)型 ,c用拉氏反變換 記憶常用的拉氏變換對(duì) d應(yīng)用凱萊-哈密頓定理三線(xiàn)性定常系統(tǒng)非齊次方程()的解:??捎衫献儞Q法證明(當(dāng)然給出拉氏變換法的求解思路)。求解步驟:先求,然后將B和u(t)代入公式即可。特殊激勵(lì)下的解。第三章線(xiàn)性控制系統(tǒng)的能控性和能觀(guān)性一能控性及能觀(guān)性定義(線(xiàn)性連續(xù)定常)二線(xiàn)性定常系統(tǒng)的能控性判別(具有一般系統(tǒng)矩陣的多輸入系統(tǒng))判別方法(一):通過(guò)線(xiàn)性變換1若A的特征值互異,線(xiàn)性變換()為對(duì)角線(xiàn)標(biāo)準(zhǔn)型,能控性充要條件:沒(méi)有全
6、為0的行。變換矩陣T的求法。2若A的特征值有相同的,線(xiàn)性變換()為約當(dāng)標(biāo)準(zhǔn)型,能控性充要條件:對(duì)應(yīng)于相同特征值的部分,每個(gè)約當(dāng)塊對(duì)應(yīng)的中最后一行元素沒(méi)有全為0的。中對(duì)應(yīng)于互異特征根部分,各行元素沒(méi)有全為0的。變換矩陣T的求法。這種方法能確定具體哪個(gè)狀態(tài)不能控。但線(xiàn)性變換比較復(fù)雜,關(guān)鍵是求、。判別方法(二):直接從,判別能控的充要條件是能控性判別矩陣的秩為n。在單輸入系統(tǒng)中,是一個(gè)的方陣;而多輸入系統(tǒng),是一個(gè)的矩陣,可通過(guò)三線(xiàn)性定常系統(tǒng)的能觀(guān)性判別判別方法(一):通過(guò)線(xiàn)性變換若A的特征值互異,線(xiàn)性變換()為對(duì)角線(xiàn)標(biāo)準(zhǔn)型,能觀(guān)性充要條件:中沒(méi)有全為0的列。變換矩陣T的求法。若A的特征值有相同的,線(xiàn)
7、性變換()為約當(dāng)標(biāo)準(zhǔn)型,能控性充要條件:對(duì)應(yīng)于相同特征值的部分,每個(gè)約當(dāng)塊對(duì)應(yīng)的中第一列元素沒(méi)有全為的。對(duì)應(yīng)于互異特征根部分,對(duì)應(yīng)的中各列元素沒(méi)有全為的。變換矩陣T的求法。這種方法能確定具體哪個(gè)狀態(tài)不能觀(guān)。但線(xiàn)性變換比較復(fù)雜,關(guān)鍵是求、。判別方法(二):直接從,C判別能觀(guān)性的充要條件是能觀(guān)性判別矩陣的秩為n。在單輸入系統(tǒng)中,是一個(gè)的方陣;而多輸入系統(tǒng),是一個(gè)的矩陣,可通過(guò)六能控性與能觀(guān)性的對(duì)偶原理若,則與對(duì)偶。對(duì)偶系統(tǒng)的傳遞函數(shù)陣是互為轉(zhuǎn)置的。且他們的特征方程式是相同的。與對(duì)偶,則能控性等價(jià)于能觀(guān)性,能觀(guān)性等價(jià)于能控性。七能控標(biāo)準(zhǔn)型和能觀(guān)標(biāo)準(zhǔn)型對(duì)于狀態(tài)反饋,化為能控標(biāo)準(zhǔn)型比較方便;對(duì)于觀(guān)測(cè)器的
8、設(shè)計(jì)及系統(tǒng)辨識(shí),能觀(guān)標(biāo)準(zhǔn)型比較方便。 能控標(biāo)準(zhǔn)型(如果已知系統(tǒng)的狀態(tài)空間表達(dá)式)判別系統(tǒng)的能控性。計(jì)算特征多項(xiàng)式,即可寫(xiě)出。求變換矩陣,。求,計(jì)算,也可以驗(yàn)證是否有。 能觀(guān)標(biāo)準(zhǔn)型判別系統(tǒng)的能觀(guān)性。計(jì)算特征多項(xiàng)式,即可寫(xiě)出。求變換矩陣,。求,計(jì)算,也可以驗(yàn)證是否有。 如果已知傳遞函數(shù)陣,可直接寫(xiě)出能控標(biāo)準(zhǔn)型和能觀(guān)標(biāo)準(zhǔn)型的狀態(tài)空間表達(dá)。能控標(biāo)準(zhǔn)型:能觀(guān)標(biāo)準(zhǔn)型:八線(xiàn)性系統(tǒng)的結(jié)構(gòu)分解1按能控性分解(狀態(tài)不完全能控,即),通過(guò)非奇異變換完成。,前個(gè)列矢量是M中個(gè)線(xiàn)性無(wú)關(guān)的列,其他列矢量保證非奇異的條件下是任意的。2按能觀(guān)性分解(狀態(tài)不完全能觀(guān),即),通過(guò)非奇異變換完成。,前個(gè)行矢量是N中個(gè)線(xiàn)性無(wú)關(guān)的行,
9、其他行矢量保證非奇異的條件下是任意的。3按能控性和能觀(guān)性分解(系統(tǒng)是不完全能控和不完全能觀(guān)的),采用逐步分解法,雖然煩瑣,但直觀(guān)。步驟:首先按能控性分解(能控狀態(tài),不能控狀態(tài))。對(duì)不能控子系統(tǒng)按能觀(guān)性分解(不能控能觀(guān)狀態(tài),不能控不能觀(guān)狀態(tài))。將能控子系統(tǒng)按能觀(guān)性分解(能控能觀(guān)狀態(tài),能控不能觀(guān)狀態(tài))。綜合各步變換結(jié)果,寫(xiě)出最后的表達(dá)式。 另一種方法:化為約當(dāng)標(biāo)準(zhǔn)型,判斷各狀態(tài)的能控性能觀(guān)測(cè)性,最后按4種類(lèi)型分類(lèi)排列。九傳遞函數(shù)陣的實(shí)現(xiàn)問(wèn)題1實(shí)現(xiàn)的定義:由寫(xiě)出狀態(tài)空間表達(dá)式,甚至畫(huà)出模擬結(jié)構(gòu)圖,稱(chēng)為傳遞函數(shù)陣的實(shí)現(xiàn)問(wèn)題。 條件:傳遞函數(shù)陣中每個(gè)元的分子分母多項(xiàng)式都是實(shí)常數(shù);元是s的真有理分式。注意
10、:如果不是有理分式,首先求出直接傳遞矩陣。2能控標(biāo)準(zhǔn)型和能觀(guān)標(biāo)準(zhǔn)型實(shí)現(xiàn) 單入單出系統(tǒng),是有理分式,可直接根據(jù)分子分母多項(xiàng)式系數(shù)寫(xiě)出能控標(biāo)準(zhǔn)1型和能觀(guān)標(biāo)準(zhǔn)2型實(shí)現(xiàn)。3最小實(shí)現(xiàn)(維數(shù)最小的實(shí)現(xiàn))為最小實(shí)現(xiàn)的充要條件是是完全能控能觀(guān)的。步驟:對(duì)給定的,初選一種實(shí)現(xiàn)(能控標(biāo)準(zhǔn)型或能觀(guān)標(biāo)準(zhǔn)型),假設(shè)選能控標(biāo)準(zhǔn)型,判斷是否完全能觀(guān)測(cè),若完全能觀(guān)測(cè)則就是最小實(shí)現(xiàn);否則進(jìn)行能觀(guān)性分解,進(jìn)一步找出能控能觀(guān)部分,即為最小實(shí)現(xiàn)。注意:傳遞函數(shù)陣的實(shí)現(xiàn)不是唯一的,最小實(shí)現(xiàn)也不是唯一的。十傳遞函數(shù)中零極點(diǎn)對(duì)消與能控性和能觀(guān)性之間的關(guān)系對(duì)單輸入系統(tǒng)、單輸出系統(tǒng)或者單輸入單輸出系統(tǒng),系統(tǒng)能控能觀(guān)的充要條件是傳遞函數(shù)沒(méi)有零極
11、點(diǎn)對(duì)消。而對(duì)多輸入多輸出系統(tǒng),傳遞函數(shù)陣沒(méi)有零極點(diǎn)對(duì)消只是最小實(shí)現(xiàn)的充分條件,也就是說(shuō),即使存在零極點(diǎn)對(duì)消,系統(tǒng)仍有可能是能控能觀(guān)的(p147 例3-19)。對(duì)單輸入單輸出系統(tǒng),若傳遞函數(shù)出現(xiàn)了零極點(diǎn)對(duì)消,還不能判斷到底是不能控還是不能觀(guān),還是既不能控又不能觀(guān)。第四章 穩(wěn)定性與李雅普諾夫方法一 穩(wěn)定性的定義李雅普諾夫給出了對(duì)任何系統(tǒng)都普遍適用的穩(wěn)定性定義。1平衡狀態(tài)為齊次狀態(tài)方程。滿(mǎn)足對(duì)所有t,都有成立的狀態(tài)矢量稱(chēng)為系統(tǒng)的平衡狀態(tài)。穩(wěn)定性問(wèn)題都是相對(duì)于某個(gè)平衡狀態(tài)而言的。通常只討論坐標(biāo)原點(diǎn)處的穩(wěn)定性。2穩(wěn)定性的幾個(gè)定義李雅普諾夫意義下穩(wěn)定(相當(dāng)于自控里的臨界穩(wěn)定);漸近穩(wěn)定(相當(dāng)于自控里的穩(wěn)定
12、);大范圍漸近穩(wěn)定,大范圍漸近穩(wěn)定的必要條件是整個(gè)狀態(tài)空間只有一個(gè)平衡狀態(tài);不穩(wěn)定。二 李雅普諾夫第一法(間接法)1線(xiàn)性定常系統(tǒng)的穩(wěn)定判據(jù)狀態(tài)穩(wěn)定性:平衡狀態(tài)漸近穩(wěn)定的充要條件是A的所有特征值具有負(fù)實(shí)部。輸出穩(wěn)定性:充要條件是傳遞函數(shù)的極點(diǎn)位于s的左半平面。2非線(xiàn)性系統(tǒng)的穩(wěn)定性線(xiàn)性化處理。;,若A的所有特征值具有負(fù)實(shí)部,則原非線(xiàn)性系統(tǒng)在平衡狀態(tài)漸近穩(wěn)定。若A的所有特征值至少有一個(gè)具有正實(shí)部,則原非線(xiàn)性系統(tǒng)在平衡狀態(tài)不穩(wěn)定。若若A的所有特征值至少有實(shí)部為零,則穩(wěn)定性不能有特征值的符號(hào)來(lái)確定。三李雅普諾夫第二法(直接法) 借助于一個(gè)李雅普諾夫函數(shù)來(lái)直接對(duì)平衡狀態(tài)的穩(wěn)定性做出判斷。1預(yù)備知識(shí)是由n維
13、矢量x定義的標(biāo)量函數(shù),且在處,恒有,對(duì)任何非零矢量x,如果,則稱(chēng)之為正定;如果,則稱(chēng)之為負(fù)定;如果則稱(chēng)之為半正定或非負(fù)定;如果則稱(chēng)之為半負(fù)定或非正定;如果或,則稱(chēng)之為不定。為二次型標(biāo)量函數(shù),為實(shí)對(duì)稱(chēng)陣。要判別的符號(hào)只要判別的符號(hào)即可。的定號(hào)判據(jù)(希爾維特斯判據(jù)):首先求出的各階順序主子式,若所有的,則()正定;若的,的則()負(fù)定;2李雅普諾夫函數(shù)對(duì)于一個(gè)給定系統(tǒng),如果能找到一個(gè)正定的標(biāo)量函數(shù),而是負(fù)定的,則這個(gè)系統(tǒng)是漸近穩(wěn)定的,這個(gè)標(biāo)量函數(shù)叫做李雅普諾夫函數(shù)。李雅普諾夫第二法的關(guān)鍵問(wèn)題就是尋找李雅普諾夫函數(shù)的問(wèn)題。穩(wěn)定性判據(jù)設(shè),平衡狀態(tài)為,如果存在標(biāo)量函數(shù)是正定的,即時(shí),有,時(shí),有,且滿(mǎn)足,則
14、稱(chēng)原點(diǎn)平衡狀態(tài)是漸近穩(wěn)定的;如果當(dāng)時(shí),則系統(tǒng)是大范圍漸近穩(wěn)定的。設(shè),平衡狀態(tài)為,如果存在標(biāo)量函數(shù)是正定的,即時(shí),有,時(shí),有,且滿(mǎn)足,但除外,即,不恒等于,則稱(chēng)原點(diǎn)平衡狀態(tài)是漸近穩(wěn)定的;如果當(dāng)時(shí),則系統(tǒng)是大范圍漸近穩(wěn)定的。設(shè),平衡狀態(tài)為,如果存在標(biāo)量函數(shù)是正定的,即時(shí),有,時(shí),有,且滿(mǎn)足,但任意的,恒等于,則稱(chēng)原點(diǎn)平衡狀態(tài)是李雅普諾夫意義下穩(wěn)定的。設(shè),平衡狀態(tài)為,如果存在標(biāo)量函數(shù)是正定的,即時(shí),有,時(shí),有,且滿(mǎn)足,則稱(chēng)原點(diǎn)平衡狀態(tài)是不穩(wěn)定的。需要注意:這些判據(jù)定理知識(shí)充分條件,也就是說(shuō),沒(méi)有找到合適的李雅普諾夫函數(shù)來(lái)證明原點(diǎn)的穩(wěn)定性,不能說(shuō)明原點(diǎn)一定是不穩(wěn)定的。如果是可找到的,那么通常是非唯一的
15、,但不影響結(jié)論。最簡(jiǎn)單的形式是二次型標(biāo)量函數(shù),但不一定都是簡(jiǎn)單的二次型。構(gòu)造需要較多技巧。四李雅普諾夫方法在線(xiàn)性系統(tǒng)中的應(yīng)用線(xiàn)性定常連續(xù)系統(tǒng)漸近穩(wěn)定判據(jù)定理:,若A是非奇異的,原點(diǎn)是唯一的平衡點(diǎn)。原點(diǎn)大范圍漸近穩(wěn)定的充要條件是對(duì)任意對(duì)稱(chēng)實(shí)正定矩陣,李雅普諾夫方程,存在唯一的對(duì)稱(chēng)正定解。該定理等價(jià)于的特征值具有負(fù)實(shí)部。但高階系統(tǒng)求解特征值復(fù)雜。步驟:選定正定矩陣,通常為,代入李雅普諾夫方程,確定出,判斷是否正定,進(jìn)而做出系統(tǒng)漸近穩(wěn)定的結(jié)論。五非線(xiàn)性系統(tǒng)的李雅普諾夫穩(wěn)定性分析雅可比矩陣法步驟:,寫(xiě)出,計(jì)算雅可比矩陣,對(duì)給定正定矩陣(通常),為正定的。并且為系統(tǒng)的一個(gè)李雅普諾夫函數(shù)。第五章 線(xiàn)性定常
16、系統(tǒng)的綜合一線(xiàn)性反饋控制系統(tǒng)的基本結(jié)構(gòu)及其特性1狀態(tài)反饋 將系統(tǒng)的每一個(gè)狀態(tài)變量乘以相應(yīng)的反饋系數(shù),然后反饋到輸入端與參考輸入相加,作為受控系統(tǒng)的控制輸入。K稱(chēng)為狀態(tài)反饋增益陣,。設(shè)原受控系統(tǒng),=0。狀態(tài)反饋閉環(huán)系統(tǒng)的狀態(tài)空間表達(dá)式簡(jiǎn)稱(chēng)與原受控系統(tǒng)比較,狀態(tài)反饋增益陣的引入,并不增加系統(tǒng)的維數(shù),但可以通過(guò)的選擇改變閉環(huán)系統(tǒng)的特征值,從而使獲得所要求的性能。2輸出反饋由輸出端y引入輸出反饋增益陣H(),然后反饋到輸入端與參考輸入相加,作為受控系統(tǒng)的控制輸入。狀態(tài)空間表達(dá)式為簡(jiǎn)稱(chēng)通過(guò)的選擇也可以改變閉環(huán)系統(tǒng)的特征值,從而改變性能,但可供選擇的自由度遠(yuǎn)比小(通常)。從輸出到狀態(tài)變量導(dǎo)數(shù)的反饋從輸出y
17、引入反饋增益陣G()到狀態(tài)變量的導(dǎo)數(shù),所得狀態(tài)空間表達(dá)式為簡(jiǎn)稱(chēng)通過(guò)的選擇也可以改變閉環(huán)系統(tǒng)的特征值,從而改變性能。以上三種反饋的共同點(diǎn)是,不增加新的狀態(tài)變量,系統(tǒng)開(kāi)環(huán)與閉環(huán)同維,其次,反饋增益陣都是常數(shù)矩陣,反饋為線(xiàn)性反饋。閉環(huán)系統(tǒng)的能控性與能觀(guān)性a狀態(tài)反饋不改變受控系統(tǒng)的能控性,但不保證系統(tǒng)的能觀(guān)性不變。b輸出反饋不改變受控系統(tǒng)的能觀(guān)性,但不保證系統(tǒng)的能控性不變。二極點(diǎn)配置問(wèn)題就是通過(guò)選擇反饋增益矩陣,將閉環(huán)系統(tǒng)的極點(diǎn)恰好配置在根平面所期望的位置,以獲得所希望的動(dòng)態(tài)性能。只討論單輸入單輸出系統(tǒng)采用狀態(tài)反饋對(duì)系統(tǒng)任意配置極點(diǎn)的充要條件是完全能控。給定,給定期望的極點(diǎn),設(shè)計(jì)狀態(tài)反饋控制器的方法:
18、能控規(guī)范型法,適合于。首先判斷是否完全能控,是,則存在狀態(tài)觀(guān)測(cè)器。通過(guò)線(xiàn)性變換化為能控標(biāo)準(zhǔn)型,得到。加入狀態(tài)反饋增益矩陣,得到閉環(huán)系統(tǒng)狀態(tài)空間表達(dá)式,求出對(duì)應(yīng)的閉環(huán)特征多項(xiàng)式。由給定的期望極點(diǎn),求出期望的閉環(huán)特征多項(xiàng)式。將與比較,即可得到。把對(duì)應(yīng)與的,通過(guò) 。進(jìn)一步畫(huà)出模擬結(jié)構(gòu)圖。當(dāng)階次較低時(shí),可直接由反映物理系統(tǒng)的A,b矩陣求狀態(tài)反饋增益矩陣,不通過(guò)非奇異變換,使設(shè)計(jì)工作簡(jiǎn)單。首先判斷是否完全能控,是,則存在狀態(tài)觀(guān)測(cè)器。加入狀態(tài)反饋增益矩陣,得到閉環(huán)系統(tǒng)狀態(tài)空間表達(dá)式,求出對(duì)應(yīng)的閉環(huán)特征多項(xiàng)式。由給定的期望極點(diǎn),求出期望的閉環(huán)特征多項(xiàng)式。將與比較,即可得到。進(jìn)一步畫(huà)出模擬結(jié)構(gòu)圖。注意,如果給
19、定的是傳遞函數(shù),則先畫(huà)出其要求的模擬結(jié)構(gòu)圖,寫(xiě)出狀態(tài)空間描述,然后做其他工作。2采用輸出反饋不能任意極點(diǎn)配置,正是輸出線(xiàn)性反饋的基本弱點(diǎn)。采用從輸出到的反饋對(duì)系統(tǒng)任意配置極點(diǎn)的充要條件是完全能觀(guān)。設(shè)計(jì)從輸出到的反饋陣的問(wèn)題就是其對(duì)偶系統(tǒng)設(shè)計(jì)狀態(tài)反饋陣的問(wèn)題。方法:()能觀(guān)標(biāo)準(zhǔn)型法,適合于。首先判斷是否完全能觀(guān),是,則存在輸出反饋。通過(guò)線(xiàn)性變換化為能觀(guān)標(biāo)準(zhǔn)型,得到。加入輸出反饋增益矩陣,得到閉環(huán)系統(tǒng)狀態(tài)空間表達(dá)式,求出對(duì)應(yīng)的閉環(huán)特征多項(xiàng)式。由給定的期望極點(diǎn),求出期望的閉環(huán)特征多項(xiàng)式。將與比較,即可得到。把對(duì)應(yīng)與的,通過(guò) 。進(jìn)一步畫(huà)出模擬結(jié)構(gòu)圖。當(dāng)階次較低時(shí),可直接由反映物理系統(tǒng)的A,c矩陣求狀態(tài)
20、反饋增益矩陣,不通過(guò)非奇異變換,使設(shè)計(jì)工作簡(jiǎn)單。首先判斷是否完全能觀(guān),是,則存在輸出反饋。加入從輸出到的反饋增益矩陣,得到閉環(huán)系統(tǒng)狀態(tài)空間表達(dá)式,求出對(duì)應(yīng)的閉環(huán)特征多項(xiàng)式。由給定的期望極點(diǎn),求出期望的閉環(huán)特征多項(xiàng)式。將與比較,即可得到。進(jìn)一步畫(huà)出模擬結(jié)構(gòu)圖。三系統(tǒng)鎮(zhèn)定問(wèn)題所謂系統(tǒng)鎮(zhèn)定,是對(duì)受控系統(tǒng)通過(guò)反饋使其極點(diǎn)均具有負(fù)實(shí)部,保證系統(tǒng)為漸近穩(wěn)定。鎮(zhèn)定問(wèn)題是極點(diǎn)配置問(wèn)題的一種特殊情況,它只要求把閉環(huán)極點(diǎn)配置在根平面的左側(cè),而并不要求將閉環(huán)極點(diǎn)嚴(yán)格地配置在期望極點(diǎn)上。狀態(tài)反饋能鎮(zhèn)定的充要條件是其不能控子系統(tǒng)為漸近穩(wěn)定。輸出反饋能鎮(zhèn)定的充要條件是結(jié)構(gòu)分解中能控能觀(guān)子系統(tǒng)是輸出反饋能鎮(zhèn)定的,其余子系統(tǒng)
21、是漸近穩(wěn)定的。輸出到的反饋實(shí)現(xiàn)鎮(zhèn)定的充要條件是不能觀(guān)子系統(tǒng)為漸近穩(wěn)定。五狀態(tài)觀(guān)測(cè)器作用:閉環(huán)極點(diǎn)的任意配置、系統(tǒng)解藕以及最優(yōu)控制系統(tǒng)都離不開(kāi)狀態(tài)反饋。但狀態(tài)變量并不是都能直接檢測(cè),有些根本無(wú)法檢測(cè),這就提出狀態(tài)觀(guān)測(cè)或狀態(tài)重構(gòu)問(wèn)題。龍伯格提出的狀態(tài)觀(guān)測(cè)器理論,解決的狀態(tài)重構(gòu)問(wèn)題,使?fàn)顟B(tài)反饋成為一種可實(shí)現(xiàn)的控制律。定義:動(dòng)態(tài)系統(tǒng)以的輸入u和輸出y作為輸入量,產(chǎn)生一組輸出量逼近于,即,則稱(chēng)為的一個(gè)狀態(tài)觀(guān)測(cè)器。構(gòu)造原則:必須是完全能觀(guān)或不能觀(guān)子系統(tǒng)是漸近穩(wěn)定的;的輸出應(yīng)以足夠快的速度漸近于;在結(jié)構(gòu)上盡可能簡(jiǎn)單(具有盡可能低的維數(shù)),以便于物理實(shí)現(xiàn)。等價(jià)性指標(biāo)動(dòng)態(tài)系統(tǒng)原系統(tǒng)得到只要系統(tǒng)是穩(wěn)定的,即的特征
22、值具有負(fù)實(shí)部,就可做到與是穩(wěn)態(tài)等價(jià)的。重構(gòu)狀態(tài)方程原因:系統(tǒng)的狀態(tài)是不能直接量測(cè)的,因此很難判斷是否有逼近于;不一定能保證的特征值均具有負(fù)實(shí)部??朔@個(gè)困難,用對(duì)輸出量的差值的測(cè)量代替對(duì)狀態(tài)誤差的測(cè)量,當(dāng),有。同時(shí),引入反饋陣,使系統(tǒng)的特征值具有負(fù)實(shí)部。狀態(tài)重構(gòu)方框圖為p213 5.16(a) 要求熟練記憶,這種狀態(tài)觀(guān)測(cè)器稱(chēng)為漸近觀(guān)測(cè)器。狀態(tài)觀(guān)測(cè)器方程為記為這里的G稱(chēng)為輸出誤差反饋矩陣。可以證明,如果的特征值具有負(fù)實(shí)部,那么狀態(tài)誤差將逐漸衰減到,即估計(jì)狀態(tài)逼近于實(shí)際的狀態(tài)。逼近的速度取決于G的選擇,即的特征值的配置。觀(guān)測(cè)器的存在性對(duì)于完全能觀(guān)測(cè)的線(xiàn)性定常系統(tǒng),其觀(guān)測(cè)器總是存在的。觀(guān)測(cè)器存在的充
23、要條件是不能觀(guān)子系統(tǒng)是漸近穩(wěn)定的。觀(guān)測(cè)器的極點(diǎn)配置定理:線(xiàn)性定常系統(tǒng),其觀(guān)測(cè)器可以任意配置極點(diǎn),即具有任意逼近速度的充要條件是完全能觀(guān)測(cè)。極點(diǎn)配置方法:(1)能觀(guān)標(biāo)準(zhǔn)型法,適合于。首先判斷是否完全能觀(guān),是,存在觀(guān)測(cè)器可以任意極點(diǎn)配置。通過(guò)線(xiàn)性變換化為能觀(guān)標(biāo)準(zhǔn)型,得到。加入輸出誤差反饋陣,得到閉環(huán)系統(tǒng)狀態(tài)空間表達(dá)式,求出對(duì)應(yīng)的閉環(huán)特征多項(xiàng)式。由給定的期望極點(diǎn),求出期望的閉環(huán)特征多項(xiàng)式。將與比較,即可得到。把對(duì)應(yīng)與的,通過(guò) 。得觀(guān)測(cè)器方程,進(jìn)一步畫(huà)出模擬結(jié)構(gòu)圖。當(dāng)階次較低時(shí),可由特征值不變?cè)砬鬆顟B(tài)反饋增益矩陣,不通過(guò)非奇異變換,使設(shè)計(jì)工作簡(jiǎn)單。首先判斷是否完全能觀(guān),是,則存在觀(guān)測(cè)器可以任意極點(diǎn)配置。引入輸出誤差
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融行業(yè)前臺(tái)咨詢(xún)工作總結(jié)
- 營(yíng)銷(xiāo)行業(yè)創(chuàng)新實(shí)踐總結(jié)
- 無(wú)人駕駛技術(shù)的前景展望
- IT行業(yè)銷(xiāo)售員工作總結(jié)
- 電力行業(yè)可再生能源發(fā)展顧問(wèn)工作總結(jié)
- 書(shū)店美容院保安工作經(jīng)驗(yàn)
- 金融行業(yè)中理財(cái)咨詢(xún)顧問(wèn)的工作要求
- 旅游行業(yè)導(dǎo)游培訓(xùn)總結(jié)
- 【八年級(jí)下冊(cè)地理湘教版】專(zhuān)項(xiàng)04 時(shí)政地理
- 2024年稅務(wù)師題庫(kù)附參考答案【輕巧奪冠】
- 衛(wèi)生化學(xué)期末考試習(xí)題2
- 瓣周漏護(hù)理查房
- 歷代反腐完整
- 《現(xiàn)代控制理論》(劉豹-唐萬(wàn)生)
- 廣東省佛山市南海區(qū)三水區(qū)2022-2023學(xué)年七年級(jí)上學(xué)期期末歷史試題(無(wú)答案)
- 重視心血管-腎臟-代謝綜合征(CKM)
- 譯林版小學(xué)英語(yǔ)六年級(jí)上冊(cè)英文作文范文
- 學(xué)術(shù)英語(yǔ)(理工類(lèi))
- 淺談“五育并舉”背景下中小學(xué)勞動(dòng)教育的探索與研究 論文
- 大樹(shù)的故事 單元作業(yè)設(shè)計(jì)
- 六年級(jí)道德與法治學(xué)情分析
評(píng)論
0/150
提交評(píng)論