求遞推數(shù)列的通項(xiàng)公式的十一種方法包含特征根和不動點(diǎn)_第1頁
求遞推數(shù)列的通項(xiàng)公式的十一種方法包含特征根和不動點(diǎn)_第2頁
求遞推數(shù)列的通項(xiàng)公式的十一種方法包含特征根和不動點(diǎn)_第3頁
求遞推數(shù)列的通項(xiàng)公式的十一種方法包含特征根和不動點(diǎn)_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、求遞推數(shù)列的通項(xiàng)公式的九種方法利用遞推數(shù)列求通項(xiàng)公式,在理論上和實(shí)踐中均有較高的價值.自從二十世紀(jì)八十年代以來,這一直是全國高考和高中數(shù)學(xué)聯(lián)賽的熱點(diǎn)之一.一、作差求和法例1 在數(shù)列中,,,求通項(xiàng)公式.解:原遞推式可化為:則 ,逐項(xiàng)相加得:.故.二、作商求和法例2 設(shè)數(shù)列是首項(xiàng)為1的正項(xiàng)數(shù)列,且(n=1,2,3),則它的通項(xiàng)公式是=(2000年高考15題)解:原遞推式可化為: =0 0, 則 , 逐項(xiàng)相乘得:,即=.三、換元法例3 已知數(shù)列,其中,且當(dāng)n3時,求通項(xiàng)公式(1986年高考文科第八題改編).解:設(shè),原遞推式可化為: 是一個等比數(shù)列,公比為.故.故.由逐差法可得:. 例4已知數(shù)列,其中

2、,且當(dāng)n3時,求通項(xiàng)公式。解 由得:,令,則上式為,因此是一個等差數(shù)列,公差為1.故.。由于又所以,即 四、積差相消法 例5(1993年全國數(shù)學(xué)聯(lián)賽題一試第五題)設(shè)正數(shù)列,滿足= 且,求的通項(xiàng)公式.解 將遞推式兩邊同除以整理得:設(shè)=,則=1,故有 ()由+ +()得=,即=.逐項(xiàng)相乘得:=,考慮到,故 . 五、取倒數(shù)法例6 已知數(shù)列中,其中,且當(dāng)n2時,求通項(xiàng)公式。解 將兩邊取倒數(shù)得:,這說明是一個等差數(shù)列,首項(xiàng)是,公差為2,所以,即.六、取對數(shù)法例7 若數(shù)列中,=3且(n是正整數(shù)),則它的通項(xiàng)公式是=(2002年上海高考題).解 由題意知0,將兩邊取對數(shù)得,即,所以數(shù)列是以=為首項(xiàng),公比為2

3、的等比數(shù)列, ,即.七、平方(開方)法例8 若數(shù)列中,=2且(n),求它的通項(xiàng)公式是.解 將兩邊平方整理得。數(shù)列是以=4為首項(xiàng),3為公差的等差數(shù)列。因?yàn)?,所以。八、待定系數(shù)法待定系數(shù)法解題的關(guān)鍵是從策略上規(guī)范一個遞推式可變成為何種等比數(shù)列,可以少走彎路.其變換的基本形式如下:1、(A、B為常數(shù))型,可化為=A()的形式.例9 若數(shù)列中,=1,是數(shù)列的前項(xiàng)之和,且(n),求數(shù)列的通項(xiàng)公式是.解 遞推式可變形為 (1)設(shè)(1)式可化為 (2)比較(1)式與(2)式的系數(shù)可得,則有。故數(shù)列是以為首項(xiàng),3為公比的等比數(shù)列。=。所以。當(dāng)n,。數(shù)列的通項(xiàng)公式是 。2、(A、B、C為常數(shù),下同)型,可化為

4、=)的形式.例10 在數(shù)列中,求通項(xiàng)公式。解:原遞推式可化為: 比較系數(shù)得=-4,式即是:.則數(shù)列是一個等比數(shù)列,其首項(xiàng),公比是2. 即.3、型,可化為的形式。例11 在數(shù)列中,當(dāng), 求通項(xiàng)公式.解:式可化為:比較系數(shù)得=-3或=-2,不妨取=-2.式可化為:則是一個等比數(shù)列,首項(xiàng)=2-2(-1)=4,公比為3.利用上題結(jié)果有:.4、型,可化為的形式。例12 在數(shù)列中,=6 求通項(xiàng)公式.解 式可化為: 比較系數(shù)可得:=-6, 式為是一個等比數(shù)列,首項(xiàng),公比為.即 故.九、猜想法 運(yùn)用猜想法解題的一般步驟是:首先利用所給的遞推式求出,然后猜想出滿足遞推式的一個通項(xiàng)公式,最后用數(shù)學(xué)歸納法證明猜想是

5、正確的。例13 在各項(xiàng)均為正數(shù)的數(shù)列中,為數(shù)列的前n項(xiàng)和,=+ ,求其通項(xiàng)公式。 求遞推數(shù)列通項(xiàng)的特征根法與不動點(diǎn)法一、形如是常數(shù))的數(shù)列 形如是常數(shù))的二階遞推數(shù)列都可用特征根法求得通項(xiàng),其特征方程為 若有二異根,則可令是待定常數(shù)) 若有二重根,則可令是待定常數(shù)) 再利用可求得,進(jìn)而求得例1已知數(shù)列滿足,求數(shù)列的通項(xiàng)解:其特征方程為,解得,令,由,得, 例2已知數(shù)列滿足,求數(shù)列的通項(xiàng)解:其特征方程為,解得,令,由,得, 二、形如的數(shù)列 對于數(shù)列,是常數(shù)且) 其特征方程為,變形為 若有二異根,則可令(其中是待定常數(shù)),代入的值可求得值 這樣數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,于是這樣可求得 若有二重根,則可令(其中是待定常數(shù)),代入的值可求得值 這樣數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,于是這樣可求得此方法又稱不動點(diǎn)法例3已知數(shù)列滿足,求數(shù)列的通項(xiàng)解:其特征方程為,化簡得,解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論