




下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第18章 勾股定理復(fù)習(xí)一知識(shí)歸納勾股定理內(nèi)容:直角三角形兩直角邊的平方和等于斜邊的平方;表示方法:如果直角三角形的兩直角邊分別為,斜邊為,那么勾股定理的由來(lái):勾股定理也叫商高定理,在西方稱(chēng)為畢達(dá)哥拉斯定理我國(guó)古代把直角三角形中較短的直角邊稱(chēng)為勾,較長(zhǎng)的直角邊稱(chēng)為股,斜邊稱(chēng)為弦早在三千多年前,周朝數(shù)學(xué)家商高就提出了“勾三,股四,弦五”形式的勾股定理,后來(lái)人們進(jìn)一步發(fā)現(xiàn)并證明了直角三角形的三邊關(guān)系為:兩直角邊的平方和等于斜邊的平方.勾股定理的證明勾股定理的證明方法很多,常見(jiàn)的是拼圖的方法用拼圖的方法驗(yàn)證勾股定理的思路是圖形進(jìn)過(guò)割補(bǔ)拼接后,只要沒(méi)有重疊,沒(méi)有空隙,面積不會(huì)改變根據(jù)同一種圖形的面積不同
2、的表示方法,列出等式,推導(dǎo)出勾股定理常見(jiàn)方法如下:方法一:,化簡(jiǎn)可證方法二:四個(gè)直角三角形的面積與小正方形面積的和等于大正方形的面積四個(gè)直角三角形的面積與小正方形面積的和為大正方形面積為所以方法三:,化簡(jiǎn)得證.勾股定理的適用范圍勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對(duì)于銳角三角形和鈍角三角形的三邊就不具有這一特征,因而在應(yīng)用勾股定理時(shí),必須明了所考察的對(duì)象是直角三角形.勾股定理的應(yīng)用已知直角三角形的任意兩邊長(zhǎng),求第三邊在中,則,知道直角三角形一邊,可得另外兩邊之間的數(shù)量關(guān)系可運(yùn)用勾股定理解決一些實(shí)際問(wèn)題.勾股定理的逆定理如果三角形三邊長(zhǎng),滿足,那么這個(gè)三角形
3、是直角三角形,其中為斜邊勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過(guò)“數(shù)轉(zhuǎn)化為形”來(lái)確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和與較長(zhǎng)邊的平方作比較,若它們相等時(shí),以,為三邊的三角形是直角三角形;若,時(shí),以,為三邊的三角形是鈍角三角形;若,時(shí),以,為三邊的三角形是銳角三角形;定理中,及只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長(zhǎng),滿足,那么以,為三邊的三角形是直角三角形,但是為斜邊勾股定理的逆定理在用問(wèn)題描述時(shí),不能說(shuō)成:當(dāng)斜邊的平方等于兩條直角邊的平方和時(shí),這個(gè)三角形是直角三角形.勾股數(shù)能夠構(gòu)成直角三角形的三邊長(zhǎng)的三個(gè)正整數(shù)稱(chēng)為勾股數(shù),即中,為
4、正整數(shù)時(shí),稱(chēng),為一組勾股數(shù)記住常見(jiàn)的勾股數(shù)可以提高解題速度,如;等用含字母的代數(shù)式表示組勾股數(shù):(為正整數(shù));(為正整數(shù))(,為正整數(shù))勾股定理的應(yīng)用勾股定理能夠幫助我們解決直角三角形中的邊長(zhǎng)的計(jì)算或直角三角形中線段之間的關(guān)系的證明問(wèn)題在使用勾股定理時(shí),必須把握直角三角形的前提條件,了解直角三角形中,斜邊和直角邊各是什么,以便運(yùn)用勾股定理進(jìn)行計(jì)算,應(yīng)設(shè)法添加輔助線(通常作垂線),構(gòu)造直角三角形,以便正確使用勾股定理進(jìn)行求解.勾股定理逆定理的應(yīng)用勾股定理的逆定理能幫助我們通過(guò)三角形三邊之間的數(shù)量關(guān)系判斷一個(gè)三角形是否是直角三角形,在具體推算過(guò)程中,應(yīng)用兩短邊的平方和與最長(zhǎng)邊的平方進(jìn)行比較,切不可
5、不加思考的用兩邊的平方和與第三邊的平方比較而得到錯(cuò)誤的結(jié)論.勾股定理及其逆定理的應(yīng)用勾股定理及其逆定理在解決一些實(shí)際問(wèn)題或具體的幾何問(wèn)題中,是密不可分的一個(gè)整體通常既要通過(guò)逆定理判定一個(gè)三角形是直角三角形,又要用勾股定理求出邊的長(zhǎng)度,二者相輔相成,完成對(duì)問(wèn)題的解決常見(jiàn)圖形:題型一:直接考查勾股定理例.在中,已知,求的長(zhǎng)已知,求的長(zhǎng)分析:直接應(yīng)用勾股定理解:題型二:應(yīng)用勾股定理建立方程例.在中,于,已知直角三角形的兩直角邊長(zhǎng)之比為,斜邊長(zhǎng)為,則這個(gè)三角形的面積為已知直角三角形的周長(zhǎng)為,斜邊長(zhǎng)為,則這個(gè)三角形的面積為分析:在解直角三角形時(shí),要想到勾股定理,及兩直角邊的乘積等于斜邊與斜邊上高的乘積有時(shí)可根據(jù)勾股定理列方程求解解:,設(shè)兩直角邊的長(zhǎng)分別為,設(shè)兩直角邊分別為,則,可得例.如圖中,求的長(zhǎng)分析:此題將勾股定理與全等三角形的知識(shí)結(jié)合起來(lái)解:作于,在中在中,例4.如圖,,分別以各邊為直徑作半圓,求陰影部分面積答案:6題型三:實(shí)際問(wèn)題中應(yīng)用勾股定理例5.如圖有兩棵樹(shù),一棵高,另一棵高,兩樹(shù)相距,一只小鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵數(shù)的樹(shù)梢,至少飛了分析:根據(jù)題意建立數(shù)學(xué)模型,如圖,過(guò)點(diǎn)作,垂足為,則,在中,由勾股定理得答案:題型四:應(yīng)用勾股定理逆定理,判定一個(gè)三角形是否是直角三角形例6.已知三角形的三邊長(zhǎng)為,判定是否為,解:,是直角三角形且,不是直角三角形例7.三
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 管理心理學(xué)研究領(lǐng)域試題及答案
- 管理者決策中的心理因素分析試題及答案
- 2025年中級(jí)經(jīng)濟(jì)師考試的成功方程式試題及答案
- 2025年自考行政管理核心知識(shí)試題及答案
- 2025年工程經(jīng)濟(jì)技術(shù)手段試題及答案
- 公共關(guān)系與市場(chǎng)營(yíng)銷(xiāo)關(guān)系試題及答案
- 學(xué)前教育機(jī)構(gòu)師資隊(duì)伍師資培訓(xùn)政策與法規(guī)研究報(bào)告
- 2025年高考第二次模擬考試物理(四川卷)參考答案
- 聚焦2025年行政管理公文寫(xiě)作試題及答案的關(guān)鍵
- 2025年市政工程備考重點(diǎn)與試題及答案
- 第四課:印巴戰(zhàn)爭(zhēng)
- 電氣設(shè)備-開(kāi)篇緒論匯編
- 武漢綠地中心項(xiàng)目技術(shù)管理策劃書(shū)(48頁(yè))
- 婚無(wú)遠(yuǎn)慮必有財(cái)憂法商思維營(yíng)銷(xiāo)之婚姻篇74張幻燈片
- 紅外圖像處理技術(shù)課件
- 小學(xué)一年級(jí)人民幣學(xué)具圖片最新整理直接打印
- 投擲:原地投擲壘球
- 港口碼頭常用安全警示標(biāo)志
- 密閉式周?chē)o脈輸液技術(shù)PPT課件
- 電梯快車(chē)調(diào)試方法
- 主要材料損耗率表
評(píng)論
0/150
提交評(píng)論