全等三角形中常見的輔助線添加方法_第1頁
全等三角形中常見的輔助線添加方法_第2頁
全等三角形中常見的輔助線添加方法_第3頁
全等三角形中常見的輔助線添加方法_第4頁
全等三角形中常見的輔助線添加方法_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、全等三角形中的常見輔助線的添加方法舉例一 有角平分線時,通常在角的兩邊截取相等的線段,構(gòu)造全等三角形。例:如圖:已知AD為ABC的中線,且12,34,求證:BECFEF。分析:要證BECFEF ,可利用三角形三邊關(guān)系定理證明,須把 BE,CF,EF移到同一個三角形中,而由已知12,34, 可在角的兩邊截取相等的線段,利用三角形全等對應(yīng)邊相等,把EN,F(xiàn)N,EF移到同一個三角形中。練習(xí):如圖,已知在ABC中,B=60°,ABC的角平分線AD,CE相交于點(diǎn)O,求證:OE=OD二、有以線段中點(diǎn)為端點(diǎn)的線段時,常延長加倍此線段,構(gòu)造全等三角形。例:如圖:AD為ABC的中線,且12,34,求證

2、:BECFEF練習(xí):如圖,ABC中,E、F分別在AB、AC上,DEDF,D是BC中點(diǎn),試比較BE+CF與EF的大小.三、有三角形中線時,常延長加倍中線,構(gòu)造全等三角形。例:如圖3:AD為 ABC的中線,求證:ABAC2AD。分析:要證ABAC2AD,由圖想到: ABBDAD,ACCDAD,所以有ABAC BDCDADAD2AD,左邊比要證結(jié)論多BDCD,故不能直接證出此題,而由2AD想到要構(gòu)造2AD,即加倍中線, 把所要證的線段轉(zhuǎn)移到同一個三角形中去。 圖3練習(xí):1、已知,如圖ABC中,AB=5,AC=3,則中線AD的取值范圍是_.2、已知ABC,AD是BC邊上的中線,分別以AB邊、AC邊為直

3、角邊各向形外作等腰直角三角形,如圖4, 求證EF2AD。 四、截長補(bǔ)短法作輔助線。例如:已知如圖5:在ABC中,ABAC,12,P為AD上任一點(diǎn)。求證:ABACPBPC。分析:要證:ABACPBPC,想到利用三角形三邊關(guān)系定理證之, 因為欲證的是線段之差,故用兩邊之差小于第三邊,從而想到構(gòu)造第三邊ABAC,故可在AB上截取AN等于AC,得ABACBN, 再連接PN,則PCPN,又在PNB中,PBPNBN,即:AB ACPBPC。練習(xí):如圖,在四邊形ABCD中,BCBA,ADCD,BD平分,求證: 五、延長已知邊構(gòu)造三角形:例如:如圖6:已知ACBD,CAD=CBD,求證:ADBC分析:欲證 A

4、DBC,先證分別含有AD,BC的三角形全等,有幾種 方案:ADC與BCD,AOD與BOC,ABD與BAC,但根據(jù)現(xiàn)有條件,均無法證全等,差角的相等,因此可設(shè)法作出新的角,且讓此角作為兩個三角形的公共角。六、連接四邊形的對角線,把四邊形的問題轉(zhuǎn)化成為三角形來解決。例如:如圖7:ABCD,ADBC 求證:AB=CD。分析:圖為四邊形,我們只學(xué)了三角形的有關(guān)知識,必須把它轉(zhuǎn)化為三角形來解決。七、有和角平分線垂直的線段時,通常把這條線段延長。例如:如圖8:在RtABC中,ABAC,BAC90°,12,CEBD的延長于E 。求證:BD2CE 分析:要證BD2CE,想到要構(gòu)造線段2CE,同時CE

5、與ABC的 平分線垂直,想到要將其延長。 八、連接已知點(diǎn),構(gòu)造全等三角形。例如:已知:如圖9;AC、BD相交于O點(diǎn),且ABDC,ACBD,求證:AD。分析:要證AD,可證它們所在的三角形ABO和DCO全等,而只有ABDC和對頂角兩個條件,差一個條件,難以證其全等,只有另尋其它的三角形全等,由ABDC,ACBD,若連接BC,則ABC和DCB全等,所以,證得AD。九、取線段中點(diǎn)構(gòu)造全等三有形。例如:如圖10:ABDC,AD 求證:ABCDCB。分析:由ABDC,AD,想到如取AD的中點(diǎn)N,連接NB,NC,再由SAS公理有ABNDCN,故BNCN,ABNDCN。下面只需證NBCNCB,再取BC的中點(diǎn)

6、M,連接MN,則由SSS公理有NBMNCM,所以NBCNCB。問題得證。十、旋轉(zhuǎn)例1 正方形ABCD中,E為BC上的一點(diǎn),F(xiàn)為CD上的一點(diǎn),BE+DF=EF,求EAF的度數(shù). 例2 如圖,是邊長為3的等邊三角形,是等腰三角形,且,以D為頂點(diǎn)做一個角,使其兩邊分別交AB于點(diǎn)M,交AC于點(diǎn)N,連接MN,則的周長為 ;應(yīng)用:1、已知四邊形中,繞點(diǎn)旋轉(zhuǎn),它的兩邊分別交(或它們的延長線)于當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(如圖1),易證當(dāng)繞點(diǎn)旋轉(zhuǎn)到時,在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請給予證明;若不成立,線段,又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明(圖1)(圖2)(圖3)2、在等邊的兩邊AB、AC所在直線上分別有兩點(diǎn)M、N,D為外一點(diǎn),且,BD=DC. 探究:當(dāng)M、N分別在直線AB、AC上移動時,BM、NC、MN之間的數(shù)量關(guān)系及的周長Q與等邊的周長L的關(guān)系圖1 圖2 圖3(I)如圖1,當(dāng)點(diǎn)M、N邊AB、AC上,且DM=DN時,BM、NC、MN之間的數(shù)量關(guān)系是 ; 此時 ; (

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論