下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、利用導(dǎo)數(shù)證明不等式的常見(jiàn)題型及解題技巧技巧精髓1、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再由單調(diào)性來(lái)證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個(gè)難點(diǎn),也是近幾年高考的熱點(diǎn)。2、解題技巧是構(gòu)造輔助函數(shù),把不等式的證明轉(zhuǎn)化為利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性或求最值,從而證得不等式,而如何根據(jù)不等式的結(jié)構(gòu)特征構(gòu)造一個(gè)可導(dǎo)函數(shù)是用導(dǎo)數(shù)證明不等式的關(guān)鍵。一、利用題目所給函數(shù)證明【例1】 已知函數(shù),求證:當(dāng)時(shí),恒有分析:本題是雙邊不等式,其右邊直接從已知函數(shù)證明,左邊構(gòu)造函數(shù),從其導(dǎo)數(shù)入手即可證明?!揪G色通道】 當(dāng)時(shí),即在上為增函數(shù) 當(dāng)時(shí),即在上為減函數(shù)故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間于是函數(shù)在上的最大值為,因此,當(dāng)時(shí),即
2、 (右面得證),現(xiàn)證左面,令, 當(dāng) ,即在上為減函數(shù),在上為增函數(shù),故函數(shù)在上的最小值為,當(dāng)時(shí),即,綜上可知,當(dāng) 【警示啟迪】如果是函數(shù)在區(qū)間上的最大(?。┲?,則有(或),那么要證不等式,只要求函數(shù)的最大值不超過(guò)就可得證2、直接作差構(gòu)造函數(shù)證明【例2】已知函數(shù) 求證:在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方;分析:函數(shù)的圖象在函數(shù)的圖象的下方問(wèn)題,即,只需證明在區(qū)間上,恒有成立,設(shè),考慮到要證不等式轉(zhuǎn)化變?yōu)椋寒?dāng)時(shí),這只要證明: 在區(qū)間是增函數(shù)即可?!揪G色通道】設(shè),即,則=當(dāng)時(shí),=從而在上為增函數(shù),當(dāng)時(shí) ,即,故在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方?!揪締⒌稀勘绢}首先根據(jù)題意構(gòu)造出一個(gè)函數(shù)(可
3、以移項(xiàng),使右邊為零,將移項(xiàng)后的左式設(shè)為函數(shù)),并利用導(dǎo)數(shù)判斷所設(shè)函數(shù)的單調(diào)性,再根據(jù)函數(shù)單調(diào)性的定義,證明要證的不等式。讀者也可以設(shè)做一做,深刻體會(huì)其中的思想方法。3、換元后作差構(gòu)造函數(shù)證明【例3】(2007年,山東卷)證明:對(duì)任意的正整數(shù)n,不等式 都成立. 分析:本題是山東卷的第(II)問(wèn),從所證結(jié)構(gòu)出發(fā),只需令,則問(wèn)題轉(zhuǎn)化為:當(dāng)時(shí),恒有成立,現(xiàn)構(gòu)造函數(shù),求導(dǎo)即可達(dá)到證明。【綠色通道】令,則在上恒正,所以函數(shù)在上單調(diào)遞增,時(shí),恒有 即,對(duì)任意正整數(shù)n,取【警示啟迪】我們知道,當(dāng)在上單調(diào)遞增,則時(shí),有如果,要證明當(dāng)時(shí),那么,只要令,就可以利用的單調(diào)增性來(lái)推導(dǎo)也就是說(shuō),在可導(dǎo)的前提下,只要證明
4、即可4、從條件特征入手構(gòu)造函數(shù)證明【例4】若函數(shù)y=在R上可導(dǎo)且滿(mǎn)足不等式x>恒成立,且常數(shù)a,b滿(mǎn)足a>b,求證:a>b【綠色通道】由已知 x+>0 構(gòu)造函數(shù) , 則 x+>0, 從而在R上為增函數(shù)。 即 a>b【警示啟迪】由條件移項(xiàng)后,容易想到是一個(gè)積的導(dǎo)數(shù),從而可以構(gòu)造函數(shù),求導(dǎo)即可完成證明。若題目中的條件改為,則移項(xiàng)后,要想到是一個(gè)商的導(dǎo)數(shù)的分子,平時(shí)解題多注意總結(jié)?!舅季S挑戰(zhàn)】 1、(2007年,安徽卷) 設(shè)求證:當(dāng)時(shí),恒有,2、(2007年,安徽卷)已知定義在正實(shí)數(shù)集上的函數(shù)其中a>0,且, 求證:3、已知函數(shù),求證:對(duì)任意的正數(shù)、, 恒有4、(2007年,陜西卷)是定義在(0,+)上的非負(fù)可導(dǎo)函數(shù),且滿(mǎn)足0,對(duì)任意正數(shù)a、b,若a < b,則必有 ( )(A)af (b)bf (a)(B)bf (a)af (b)(C)af (a)f (b)(D)bf (b)f (a)【答案咨詢(xún)】1、提示:,當(dāng),時(shí),不難證明 ,即在內(nèi)單調(diào)遞增,故當(dāng)時(shí), ,當(dāng)時(shí),恒有2、提示:設(shè)則 = , 當(dāng)時(shí), 故在上為減函數(shù),在上為增函數(shù),于是函數(shù) 在上的最小值是,故當(dāng)時(shí),有,即3、提示:函數(shù)的定義域?yàn)?,?dāng)時(shí),即在上為減函數(shù) 當(dāng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年床上用品品牌代理合同
- 2024醫(yī)院藥品零售許可合同
- 2024年建筑合同糾紛預(yù)防及處理辦法
- 2024年度IT企業(yè)軟件許可使用合同
- 2024年度搬廠(chǎng)工程機(jī)械設(shè)備租賃合同
- 2024年度委托加工合同:甲乙雙方在二零二四年就某產(chǎn)品委托加工的詳細(xì)條款
- 2024年度量子科技實(shí)驗(yàn)室建設(shè)安裝工程分包合同
- 2024年度智能停車(chē)安防監(jiān)控系統(tǒng)安裝合同
- 2024展廳裝飾裝修合同范文
- 2024年商標(biāo)許可使用合同商標(biāo)范圍
- 小記者第一課我是一名小記者
- 團(tuán)結(jié)友愛(ài)和睦相處主題班會(huì)
- 2024年采購(gòu)部年度工作總結(jié)
- 2024年江蘇省中等職業(yè)學(xué)校學(xué)生學(xué)業(yè)水平考試機(jī)械CAD繪圖評(píng)分表
- 期中 (試題) -2024-2025學(xué)年外研版(三起)英語(yǔ)六年級(jí)上冊(cè)
- 中小學(xué)教師職業(yè)道德規(guī)范(2023年修訂)全文1500字
- 2024年車(chē)路云一體化系統(tǒng)建設(shè)與應(yīng)用指南報(bào)告
- 2024中國(guó)移動(dòng)重慶公司社會(huì)招聘138人高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 二十屆三中全會(huì)精神知識(shí)競(jìng)賽試題及答案
- (完整版)初中道德與法治課程標(biāo)準(zhǔn)
- 2024年福建省托育服務(wù)職業(yè)技能競(jìng)賽理論考試題庫(kù)(含答案)
評(píng)論
0/150
提交評(píng)論