![202X年高中數(shù)學(xué)第三章空間向量與立體幾何3.2空間向量在立體幾何中的應(yīng)用課件4新人教B版選修2_1_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/27/7f44988f-0dc7-42ea-a764-93f07da5feb9/7f44988f-0dc7-42ea-a764-93f07da5feb91.gif)
![202X年高中數(shù)學(xué)第三章空間向量與立體幾何3.2空間向量在立體幾何中的應(yīng)用課件4新人教B版選修2_1_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/27/7f44988f-0dc7-42ea-a764-93f07da5feb9/7f44988f-0dc7-42ea-a764-93f07da5feb92.gif)
![202X年高中數(shù)學(xué)第三章空間向量與立體幾何3.2空間向量在立體幾何中的應(yīng)用課件4新人教B版選修2_1_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/27/7f44988f-0dc7-42ea-a764-93f07da5feb9/7f44988f-0dc7-42ea-a764-93f07da5feb93.gif)
![202X年高中數(shù)學(xué)第三章空間向量與立體幾何3.2空間向量在立體幾何中的應(yīng)用課件4新人教B版選修2_1_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/27/7f44988f-0dc7-42ea-a764-93f07da5feb9/7f44988f-0dc7-42ea-a764-93f07da5feb94.gif)
![202X年高中數(shù)學(xué)第三章空間向量與立體幾何3.2空間向量在立體幾何中的應(yīng)用課件4新人教B版選修2_1_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/27/7f44988f-0dc7-42ea-a764-93f07da5feb9/7f44988f-0dc7-42ea-a764-93f07da5feb95.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、方向向量方向向量:法向量法向量:如果一個(gè)非零向量如果一個(gè)非零向量 與直線與直線 平行,平行,則稱向量則稱向量 為直線為直線 的方向向量的方向向量nana如果一個(gè)非零向量如果一個(gè)非零向量 與平面與平面 垂直,垂直,則稱向量則稱向量 為平面為平面 的法向量的法向量 nnann,已知),(),(222111zyxbzyxa,則的夾角為與設(shè)bacosbaba222222212121212121zyxzyxzzyyxx例例3如圖,已知長方體如圖,已知長方體 直線直線 與平面與平面 所成的所成的角為角為 , 垂直垂直 于于 , 為為 的中點(diǎn)的中點(diǎn). 1111,ABCDABC D12,1,ABAABD11A
2、AB B30AEBDEF11ABI I求異面直線求異面直線AEAE與與BFBF所成角所成角的余弦值。的余弦值。IIII求平面求平面BDFBDF與平面與平面AA1BAA1B所所成二面角的余弦值。成二面角的余弦值。CA1ABD1BF1DEC12130o例例3 如圖,已知長方體如圖,已知長方體 直線直線 與平面與平面 所成的所成的角為角為 , 垂直垂直 于于 , 為為 的中點(diǎn)。的中點(diǎn)。1111,ABCDABC D12,1,ABAABD11AAB B30AEBDEF11AB2ABBBAAAD11平面30DBA與平面與平面 所成的角為所成的角為 11AAB BBDo60BDA332AD1AE解:如圖,以
3、解:如圖,以A為原點(diǎn),建立為原點(diǎn),建立空間直角坐標(biāo)系空間直角坐標(biāo)系A(chǔ)-xyz2130oA1ABD1BF1DEC1xzyA(0,0,0)B(2,0,0)E( , ,0)2321例例3 如圖,已知長方體如圖,已知長方體 直線直線 與平面與平面 所成的所成的角為角為 , 垂直垂直 于于 , 為為 的中點(diǎn)。的中點(diǎn)。1111,ABCDABC D12,1,ABAABD11AAB B30AEBDEF11ABI I求異面直線求異面直線AEAE與與BFBF所成角的余弦值。所成角的余弦值。分析分析:即求即求 與與 夾角余弦值的絕對值夾角余弦值的絕對值A(chǔ)EBF)0 ,2321( ,AE) 1 , 0 , 1(BFF
4、 (1, 0,1)x2130oz332A1ABD1BF1DEC1yI I求異面直線求異面直線AEAE與與BFBF所成角的余弦值。所成角的余弦值。 異面直線異面直線AE、BF所成角的余弦值為所成角的余弦值為 42BFAEBFAEBFAE,cos42221)0 ,2321( ,AE) 1 , 0 , 1(BFx2130oz332A1ABD1BF1DEC1yB(2,0,0) D(0, ,0)332IIII求平面求平面BDFBDF與平面與平面AA1BAA1B所成二面角的余弦值。所成二面角的余弦值。易知平面易知平面1AAB的一個(gè)法向量的一個(gè)法向量 (0,1,0)m ( , , )nx y zBDF設(shè)設(shè)是
5、平面是平面的一個(gè)法向量的一個(gè)法向量 2 3( 2,0)3BD ) 1 , 0 , 1(BFxyxz3033220yxzxF (1, 0,1)分析分析:即求該二面角法向量余弦值的絕對值即求該二面角法向量余弦值的絕對值,再觀察二面角大小確定其值再觀察二面角大小確定其值00nBFn BFnBDn BD x2130oz332A1ABD1BF1DEC1y令令x=1得得1, 3,1n 所以平面所以平面BDFBDF與平面與平面AAAA1 1B B所成所成二面角的余弦值為二面角的余弦值為515515,cosnmnmnm由圖可知平面由圖可知平面BDFBDF與平面與平面AAAA1 1B B所成二面角為銳角所成二面
6、角為銳角IIII求平面求平面BDFBDF與平面與平面AA1BAA1B所成二面角的余弦值。所成二面角的余弦值。易知平面易知平面1AAB的一個(gè)法向量的一個(gè)法向量 (0,1,0)m 思考:若二面角思考:若二面角為鈍角則其余弦為鈍角則其余弦值為多少?值為多少?x2130oz332A1ABD1BF1DEC1y如下圖,在正方體如下圖,在正方體ABCD-A1B1C1D1中,邊中,邊長為長為2,M、N分別是分別是A1B1 、B1B的中點(diǎn),的中點(diǎn),1求異面直線求異面直線A1B、AC所成的角。所成的角。2求二面角求二面角B1-A1B-C1的余弦值。的余弦值。ABCDA1B1C1D1MNA(2,0,0)A1(2,0
7、,2) B(2,2,0)yxz解解:如圖如圖,以以D為原點(diǎn)為原點(diǎn), 建立空間直角坐標(biāo)系建立空間直角坐標(biāo)系D-xyzC(0,2,0)如下圖,在正方體如下圖,在正方體ABCD-A1B1C1D1中,邊中,邊長為長為2,M、N分別是分別是A1B1 、B1B的中點(diǎn),的中點(diǎn),1求異面直線求異面直線A1B、AC所成的所成的角。角。分析分析:可由可由 與與 夾角余弦值的絕對值求夾角余弦值的絕對值求得得BA1AC)22 , 0(1,BA)0 , 2 , 2(AC41ACBA221BA22ACABCDA1B1C1D1MN如下圖,在正方體如下圖,在正方體ABCD-A1B1C1D1中,邊中,邊長為長為2,M、N分別是
8、分別是A1B1 、B1B的中點(diǎn),的中點(diǎn),1求異面直線求異面直線A1B、AC所成的所成的角。角。41 ACBA221BA22AC21,cos111ACBAACBAACBA2, 0設(shè)異面直線設(shè)異面直線A1B、AC所成的角為所成的角為3yxzABCDA1B1C1D1MN如下圖,在正方體如下圖,在正方體ABCD-A1B1C1D1中,邊中,邊長為長為2,M、N分別是分別是A1B1 、B1B的中點(diǎn),的中點(diǎn),yxz2求二面角求二面角B1-A1B-C1的余弦值。的余弦值。易知平面易知平面的一個(gè)法向量的一個(gè)法向量 BBA11)0 , 0 , 1 (m),(zyxn 設(shè)平面設(shè)平面A1BC1的法向量為的法向量為)2
9、2 , 0(1,BA)20 , 2(1,BC0011BCnBAnzxzy令令z=1得:得:) 1 , 1 , 1 (nA1(2,0,2)B(2,2,0) C1(0,2,2)ABCDA1B1C1D1MN 平面平面的一個(gè)法向量的一個(gè)法向量 BBA11)0 , 0 , 1 (m2求二面角求二面角B1-A1B-C1的余弦值。的余弦值。如下圖,在正方體如下圖,在正方體ABCD-A1B1C1D1中,邊中,邊長為長為2,M、N分別是分別是A1B1 、B1B的中點(diǎn),的中點(diǎn),yxz) 1 , 1 , 1 (n 平面平面A1BC1的法向量為的法向量為33311,cosnmnmnm二面角二面角B1-A1B-C1的余弦值為的余弦值為33由圖可知由圖可知:二面角二面角B1-A1B-C1為銳角為銳角ABCDA1B1C1D1MN1 1、求異面直線所成的角、求異面直線所成的角2 2、求二面角、求二面角今天學(xué)習(xí)的主今天學(xué)習(xí)的主要內(nèi)容是什么要內(nèi)容是什么?作業(yè):作業(yè):如圖,在椎體如圖,在椎體P-ABCD中,中,ABCD是邊長為是邊長為1的棱的棱形,且形,且DAB=60, ,PB=2,E,F分別分別是是BC,PC的中點(diǎn)的中點(diǎn)1 證明:證明:AD 平面平面DEF;2 求二面角求二面角P-AD-B的余弦值。的余弦值。 2PAP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商鋪?zhàn)赓U申請書
- 加入系學(xué)生會的申請書
- 小學(xué)音樂教學(xué)計(jì)劃書(34篇)
- 課題申請書怎么填
- 在職博士申請書
- 社團(tuán)留部申請書
- 2024年高中化學(xué)第三章有機(jī)化合物第一節(jié)綜合訓(xùn)練含解析新人教版必修2
- 電子商務(wù)行業(yè)的物流與供應(yīng)鏈管理
- 承包魚塘的申請書
- 早自習(xí)申請書
- 數(shù)學(xué)-河南省三門峽市2024-2025學(xué)年高二上學(xué)期1月期末調(diào)研考試試題和答案
- 2025年春新人教版數(shù)學(xué)七年級下冊教學(xué)課件
- 《心臟血管的解剖》課件
- 心肺復(fù)蘇課件2024
- 2024-2030年中國并購基金行業(yè)發(fā)展前景預(yù)測及投資策略研究報(bào)告
- 河道清淤安全培訓(xùn)課件
- 2024各科普通高中課程標(biāo)準(zhǔn)
- 7.3.1印度(第1課時(shí))七年級地理下冊(人教版)
- 教師培訓(xùn)校園安全
- 北師大版語文四年級下冊全冊教案
- 《湖南師范大學(xué)》課件
評論
0/150
提交評論