




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、第十一章 全等三角形復(fù)習(xí)一、全等三角形能夠完全重合的兩個三角形叫做全等三角形。一個三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形。2、全等三角形有哪些性質(zhì)(1):全等三角形的對應(yīng)邊相等、對應(yīng)角相等。(2):全等三角形的周長相等、面積相等。(3):全等三角形的對應(yīng)邊上的對應(yīng)中線、角平分線、高線分別相等。3、全等三角形的判定(1)邊邊邊:三邊對應(yīng)相等的兩個三角形全等(可簡寫成“”)(2)邊角邊:兩邊與它們的夾角對應(yīng)相等兩個三角形全等(可簡寫成“”)(3)角邊角:兩角與它們的夾邊對應(yīng)相等的兩個三角形全等(可簡寫成“”)(4)角角邊:兩角與其中一角的對邊對應(yīng)相等的兩個三角形全等(可簡寫成“”)(5)斜邊
2、.直角邊:斜邊與一條直角邊對應(yīng)相等的兩個直角三角形全等(可簡寫成“”)4、證明兩個三角形全等的基本思路:二、角的平分線:1、(定義)從一個角的頂點出發(fā)的一條射線,如果把這個角分成兩個相等的角,這條射線叫做這個角的角平分線。2、(性質(zhì))角平分線分得的兩個角相等,并且等于所分角的一半角的平分線上的點到角的兩邊的距離相等.3、(判定)角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上。三、學(xué)習(xí)全等三角形應(yīng)注意以下幾個問題:(1)要正確區(qū)分“對應(yīng)邊”與“對邊”,“對應(yīng)角”與 “對角”的不同含義;(2表示兩個三角形全等時,表示對應(yīng)頂點的字母要寫在對應(yīng)的位置上;(3)“有三個角對應(yīng)相等”或“有兩邊及其中一邊的
3、對角對應(yīng)相等”的兩個三角形不一定全等;(4)時刻注意圖形中的隱含條件,如 “公共角” 、“公共邊”、“對頂角”第十二章 軸對稱一、軸對稱圖形1. 把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關(guān)于這條直線對稱。2. 把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關(guān)于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應(yīng)點,叫做對稱點3、軸對稱圖形與軸對稱的區(qū)別與聯(lián)系 4.軸對稱的性質(zhì) 關(guān)于某直線對稱的兩個圖形是全等形。 如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所
4、連線段的垂直平分線。 軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。 如果兩個圖形的對應(yīng)點連線被同條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。二、線段的垂直平分線1、(定義)經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。2、(性質(zhì))垂直平分線垂直于線段 垂直平分線平分線段線段垂直平分線上的點與這條線段的兩個端點的距離相等 3.(判定)與一條線段兩個端點距離相等的點,在線段的垂直平分線上三、用坐標(biāo)表示軸對稱小結(jié): 在平面直角坐標(biāo)系中,關(guān)于x軸對稱的點橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù).點(x, y)關(guān)于x軸對稱的點的坐標(biāo)為.關(guān)于y軸對稱的點縱坐標(biāo)相等,橫坐
5、標(biāo)互為相反數(shù)。點(x, y)關(guān)于y軸對稱的點的坐標(biāo)為.四、(等腰三角形)知識點回顧1、等腰三角形的定義:有兩邊相等的三角形叫做等腰三角形,其中相等的兩邊叫做腰,另一邊叫做底邊;兩腰的夾角叫做頂角,腰與底邊的夾角叫做底角2、等腰三角形的性質(zhì)、等腰三角形的兩腰相等、等腰三角形的兩個底角相等。(等邊對等角)、等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)3、等腰三角形的判定: 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)五、(等邊三角形)知識點回顧1、等邊三角形的定義:三邊都相等的三角形叫做等邊三角形2、等邊三角形的性質(zhì):、等邊三角形的三邊都相等、等
6、邊三角形的三個角都相等,并且每一個角都等于6002、等邊三角形的判定: 、三邊都相等的三角形是等邊三角形(定義)、三個角都相等的三角形是等邊三角形。 、有一個角是600的等腰三角形是等邊三角形。3.在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。常見圖形一、軸對稱型:二、相交線型三、旋轉(zhuǎn)型 三角形全等的判定一()1如圖,與全等嗎?為什么?2如圖,點B,E,C,F(xiàn)在一條直線上, 求證D三角形全等的判定二()1如圖,與相交于點O,求證2已知:如圖,。求證:AEBCFD3已知,如圖,1=2。求證:2ACED14已知:如圖是上的中線 ,且求證5.已知:如圖,正方形,求證:(1);(2).三角形全等的判定三、四(、)1已知,D是的邊上的一點,交于點E,。求證:。ADBCFE2已知:如圖 , 四邊形中 , , 求證:三角形全等的判定五()1如圖,求證:2已知:如圖,E,F(xiàn)是垂足,ADECBF求證:(1);(2)角的平分線的性質(zhì)1如圖,是的平分線,P是上的一點,交于D,交
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T-ZGTX 27-2025 原生態(tài)雪域滑雪能力要求規(guī)范
- T-ZSM 0059-2024“領(lǐng)跑者”評價技術(shù)要求 數(shù)控圓鋸床
- 二零二五年度房屋租賃合同租賃雙方租賃期間租賃物租賃權(quán)法律適用協(xié)議
- 2025年度汽車行業(yè)代理招聘人才合作協(xié)議
- 2025年度餐廳員工勞動合同試用期規(guī)定
- 鋼結(jié)構(gòu)合同補(bǔ)充協(xié)議(2025年度)安裝工程
- 二零二五年度危險品車輛運輸司機(jī)安全責(zé)任協(xié)議
- 2025年度食品飲料經(jīng)銷商授權(quán)及市場開發(fā)協(xié)議
- 二零二五年度借車車輛損失免責(zé)合同
- 二零二五年度雙方個人教育培訓(xùn)合作協(xié)議
- 2024至2030年中國蜜柚行業(yè)市場發(fā)展現(xiàn)狀及潛力分析研究報告
- 高達(dá)模型市場需求與消費特點分析
- XX小學(xué)法治副校長(派出所民警)法制教育課講稿
- 人音版音樂一年級上冊第3課《國旗國旗真美麗》說課稿
- 腸系膜上動脈栓塞護(hù)理查房課件
- DL∕T 2528-2022 電力儲能基本術(shù)語
- 產(chǎn)品研發(fā)指導(dǎo)專家聘用協(xié)議書
- 【正版授權(quán)】 IEC 60268-5:2003/AMD1:2007 EN-FR Amendment 1 - Sound system equipment - Part 5: Loudspeakers
- 2024年晉中職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫完整參考答案
- DL-T5493-2014電力工程基樁檢測技術(shù)規(guī)程
- 小學(xué)體育小課題研究
評論
0/150
提交評論