固態(tài)相變習題與參考解答_第1頁
固態(tài)相變習題與參考解答_第2頁
固態(tài)相變習題與參考解答_第3頁
固態(tài)相變習題與參考解答_第4頁
固態(tài)相變習題與參考解答_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、固態(tài)相變習題與參考解答1、解釋下列名詞:自擴散:是在純金屬中的原子或固溶體中的溶質原子由一個平衡位置遷移到另一個平衡位置的單純由熱運動引起的擴散現(xiàn)象。化學擴散:間隙擴散:間隙擴散是擴散原子在點陣的間隙位置之間跳遷而導致的擴散。間隙固溶體中溶質原子半徑較小,間隙位置數(shù)目較多,易發(fā)生間隙擴散。置換擴散:置換擴散以原子跳動到鄰近空位的方式進行,因此認為置換擴散也應該是通過單獨跳動機制進行的。它與間隙擴散的區(qū)別在于跳動是通過空位進行的,即擴散機制是一種空位擴散機制。互擴散:是溶質原子和溶劑原子同時存在遷移的擴散。嚴格來講,大部分合金系統(tǒng)的原子擴散都是互擴散。晶界擴散:熔化的釬料原子沿著母材金屬的結晶晶

2、界的擴散現(xiàn)象。晶界擴散所需要的激活能比體擴散小,因此,在溫度較低時,往往只有晶界擴散發(fā)生。而且,越是晶界多的金屬,越易于焊接,焊接的機械強度也就越高。上坡擴散:原子擴散的驅動力是化學位。在一般情況下,總是從濃度高處向濃度低處擴散,這叫順擴散,但有時也會發(fā)生從濃度低處向濃度高處擴散的現(xiàn)象,成為逆擴散,即上坡擴散。2、什么叫原子擴散和反應擴散 ?原子擴散是一種原子在某金屬基體點陣中移動的擴散。在擴散過程中并不產生新相,也稱為固溶體擴散。擴散物質在溶劑中的最大濃度不超過固溶體在擴散溫度下的極限濃度,原子擴散有自擴散,異擴散和互擴散三類。擴散過程不僅會導致固溶體的形成和固溶體成分的改變,而且還會導致相

3、的多形性轉變或化合物的形成。這種通過擴散而形成新相的現(xiàn)象稱為反應擴散,也叫相變擴散。3、什么叫界面控制和擴散控制?試述擴散的臺階機制 ?簡要解答 生長速度基本上與原子的擴散速率無關,這樣的生長過程稱為界面控制。相的生長或溶解為原子擴散速率所控制的擴散過程稱為擴散控制。如圖,相和相共格,在DE、FG處,由于是共格關系,原子不易停留,界面活動性低,而在臺階的端面CD、EF處,缺陷比較多,原子比較容易吸附。因此,相的生長是界面間接移動。隨著CD、EF的向右移動,一層又一層,在客觀上也使相的界面向上方推移,從而使相生長。這就是臺階生長機制,當然這種生長方式要慢得多。圖 臺階生長機制 4、擴散的驅動力是

4、什么?什么是擴散熱力學因子 ?驅動力類型主要有化學自由能,應變自由能和界面自由能?;瘜W自由能是指一個相沒有應變區(qū),自由能隨溫度的變化比較大;應變自由能是指由短或長范圍的引起的自由能增量;界面自由能是相界面或晶界處原子的額外自由能。在實際情況中,有些狀態(tài)是包含了各種自由能,是難以完全分開的。自然界事物變化都遵循最小自由能原理,其途徑都遵循最小耗能原理。原子運動也總是力圖使系統(tǒng)的能量降低,即使暫時還未具備轉變的條件,但轉變的潛在趨勢是存在的。而且也遵循最小耗能原理或最小阻力原理。擴散熱力學因子5、顯微結構的不穩(wěn)定性主要是由哪些因素造成的 ?顯微組織結構的穩(wěn)定性是在一定條件下相對穩(wěn)定的程度。顯微組織

5、的不穩(wěn)定性需要有激活能和驅動力,這激活能可由熱起伏和能量起伏提供;驅動力的類型主要由化學自由能、應變自由能和界面自由能。不穩(wěn)定的因素是隨環(huán)境條件而變化的。例如,晶粒大小事影響組織穩(wěn)定性的因素之一,在室溫時,晶粒細小能提高材料性能;而在高溫時,細小的晶粒相對來說是不穩(wěn)定的,會長大。6、什么是Gibbs-Thomson效應?寫出其表達式。在第二相析出量基本達到平衡態(tài)后,將發(fā)生第二相的長大粗化和釋放過剩界面能的物理過程,該過程是由于小質點具有較高溶解度引起的。小質點的表面積與體積之比較大,相對來說是不穩(wěn)定的,有溶解的趨勢,而系統(tǒng)中的大質點則會長大。描述這個過程的是著名的Gibbs-Thomson效應

6、,其表達式為:7、什么是Ostwald Ripening Process ? 寫出描述其過程的表達式,總結其過程規(guī)律 ?當母相大致達到平衡濃度后,析出相以界面能為驅動力緩慢長大的過程為奧斯特瓦德熟化過程(Ostwald Ripening Process)擴散控制的Ostwald長大規(guī)律的表達式為:析出粒子的長大速率隨粒子大小的變化規(guī)律如圖所示,總結如下:.當r=,dr/dt=0.當質點半徑r<r時,這些質點都會溶解,即dr/dt<0.當質點半徑r>r時,這些質點都會溶解,即dr/dt>0.對表達式求極值得到r=2r,所以當r=2r時,dr/dt為極大值,粒子的長大速率最

7、大。當r>2r時,質點的長大速率dr/dt逐漸降低。在長大過程中,當r增大時,所有析出粒子的長大速率dr/dt均降低。溫度的影響是比較復雜的,表達式中的分子上有擴散系數(shù)D,分母上有溫度的直接作用,兩者的作用是相反的。綜合效果往往是溫度提高,可增加粒子的長大速率。體系過程剛開始時。r稍大于r的質點,它們的長大速率小于體系中粒子的平均長大速率,所以這樣的質點8、在1127某碳氫氣體被通入到一低碳鋼管(管長1m,管內徑8 mm,外徑12 mm)。管外保持為純氫氣氛,有可能使管外表面的碳活度降低到最低限度。假設在碳氫氣體中的碳活度是很高的,以致于在氣氛中有固體顆粒碳。已知:在1127時,碳的擴散

8、系數(shù)為D = 6×10-6 cm2/s。試計算通碳氫氣體100小時后,會有多少碳擴散到管的外面來 ? 簡要解答 該題是二維穩(wěn)態(tài)擴散,可應用公式:現(xiàn)已知:l=100cm, r1=0.8cm, r2=1.2cm, C2=0, t=36×104 s.應該注意:左右兩邊的量綱單位要統(tǒng)一。已知條件中的單位要換算。由Fe-C相圖知,1400K時C在奧氏體中最大固溶度為2%(質量分數(shù)), (C的密度為2.5g/cm3 ,Fe的密度7.8 g/cm3 )將已知條件代入公式得到:M = 2 × 3.1416 × 100 × 6 × 10-6 ×

9、; ( 0.15 / ln1.5 ) × 36 × 104 502 (g)答:100小時后,將有約502 g的碳擴散到管外來。9、有一容器,其外層是低碳鋼,里層為不銹鋼。里層的厚度是外層的1/100。現(xiàn)容器內充有氫氣。已知:在試驗溫度下,低碳鋼為相,不銹鋼為相;在這溫度下氫氣在、兩相界面處的重量百分濃度分別為C=0.00028%,C=0.00045% ;并假設在試驗溫度下,D=100 D。試問哪一層對阻止氫氣的向外擴散起了決定性作用 ?簡要解答 這是兩相系統(tǒng)中的穩(wěn)態(tài)擴散問題,且該兩層厚度與擴散物質H無關。所以有:擴散物質的流量主要決定于具有最大值的那個相,即這個相對擴散物質

10、具有最大的阻力,所以在只要計算比較兩個相的值,就可以知道了。因為,。因為,對外層低碳鋼: 對里層不銹鋼:所以,外層低碳鋼/里層不銹鋼 = 因此,外層低碳鋼對阻止氫氣的向外擴散起了決定性作用。10、某低合金過共析鋼(含0.9%C)被加熱到800,形成了奧氏體組織,然后被快速冷卻到A1溫度以下保溫,直到完全轉變成珠光體組織。因為是過共析鋼,所以在珠光體轉變前有自由滲碳體析出,會沿著晶界析出一層厚的滲碳體,損害鋼的性能。已知:在550、650珠光體轉變完成時間分別為10秒和10分鐘。試計算在550轉變的危害性大,還是650時轉變的危害性大 ?簡要解答 用晶界薄膜沉淀公式,在兩溫度下比較它們的的值:取

11、公式計算D值。由Fe-C相圖查得:650時,;550時,。 , 由此可知:650時轉變要比550時轉變危害性大。11、一種沒有合金化的具有粗大片狀石墨的灰口鑄鐵,以相當緩慢的冷卻速率通過A1溫度。發(fā)現(xiàn)其組織特點為:金屬基體相主要是珠光體,但是每一片石墨都被一層先共析鐵素體包圍。假設通過試驗已經知道,需要作為珠光體形核核心的滲碳體,直到710還不可能形成,另一方面,鐵素體卻很容易形核,如果冷卻速率為1K / min 。取C的擴散系數(shù)為:D=0.02exp(Q / RT), Q=20000 cal / mol。計算一下會形成多厚的鐵素體層。作為近似計算,可認為是在中間溫度區(qū)間的一個等溫反應過程。如

12、果是球狀石墨周圍形成了所謂的牛眼狀鐵素體(如圖),在放大500倍條件下,經測量鐵素體平均厚度為6.5mm,在以上條件下,試估算其冷卻速率。題11圖 鑄態(tài)球鐵珠光體+鐵素體+球狀石墨(500X)簡要解答 用新相在原兩舊相間形成長大(書2.30式),根據(jù)題目改變符號有: , 等溫溫度T?。?23+710)/2 = 717;因為速度V為1K / min,所以等溫時間t = T/V = (723-710) / 1 = 13min。?。?0.025,=0.85,=0.025。這里分子、分母都有濃度,所以可直接用質量分數(shù)代入就可。經計算D = 0.74×10-6 cm2/s 。將有關數(shù)據(jù)代入公式

13、得: ,對于如圖所示的牛眼狀鐵素體,經測量牛眼狀鐵素體環(huán)形厚度為6.5mm,放大500倍,所以實際厚為0.013mm。求冷卻速率,先需求得時間t。(圖的倍數(shù)已不正確了) ,t = 37.7s V = T / t = 13 / 37.7 = 0.345 K / s = 20.7 K / min 如采用原題片狀鐵素體的條件,采用球狀長大相公式,求平均擴散距離R2 :R2 = 0.0125cm (邊界條件并不很吻合,因為C原子同時向石墨和奧氏體中擴散) 根據(jù)照片設球形石墨的平均半徑與牛眼狀鐵素體環(huán)形厚度相當,牛眼狀鐵素體環(huán)形厚度=R2 r(部分球形石墨)= 0.0125 - 0.0059 = 0.0

14、066cm12、為避免鎳和鉭直接反應,在鎳和鉭片中間插入一層厚0.05cm的MgO,如圖所示。在1400時,Ni離子將通過MgO層向鉭片擴散,試計算Ni離子每秒的擴散量。已知Ni離子在MgO中的擴散系數(shù)為9×10-12 cm2 / s,在1400時,Ni的點陣常數(shù)是3.6×10-8 cm。題12圖 鎳通過MgO層的擴散偶簡要解答 在Ni/MgO界面上,Ni為100%,或:在Ta/MgO界面上,Ni為0%,這樣,濃度梯度就可得到:Ni原子通過MgO層的擴散流量為: Ni原子/(cm2·s)Ni原子在每秒通過2cm×2cm界面的總量為: (Ni原子/ s)N

15、i原子從Ni/MgO界面上每秒離開的量:或Ni層厚度的每秒減少的量:如10-4 cm的Ni層要擴散消失,需時間為:13、直徑3cm、長10cm管子,一端裝有濃度為0.5×1020atoms/cm3的氮(N)和0.5×1020atoms/cm3的氫(H),另一端裝有1.0×1018atoms/cm3的氮和1.0×1018atoms/cm3的氫,中間用一體心立方結構的鐵膜片隔開。氣體不斷地引入這管子以保證氮和氫的濃度為常數(shù)。整個系統(tǒng)都是在700下進行。系統(tǒng)設計要求每小時擴散通過該膜片的氮不超過1%,而允許90%的氫通過該膜片。試設計該膜片的厚度。題13圖 鐵

16、膜片設計示意圖簡要解答 容器中N原子的總量為:(0.5 × 1020 N/cm3)( / 4)( 3cm )2 ( 10cm ) = 35.343 × 1020 N原子系統(tǒng)損失N的最大量為1% ,每小時損失的N 原子為:(0.01)( 35.343×1020 ) = 35.343×1018 N原子/ h =0.0098×1018 N原子/s所以其擴散流量: N原子/(cm2·s)N原子在700在體心立方晶體中的擴散系數(shù)經計算為:D=3.64×10-7 cm2/s N原子/cm3 (最小的厚度)允許90%的氫通過的最大厚度,用

17、同樣的方法可得到。每小時氫的損失W:W = 0.90 × 35.343 × 1020 = 31.80 × 1020 , 每秒氫的損失為0.0088×1020 .J = 0.125 × 1018 H原子/(cm2·s)氫原子的擴散系數(shù)D:所以, (最大的厚度)因此,管的厚度在0.0128cm 0.0729cm之間是安全的。 14、一共析碳素鋼在A1溫度于濕氫中進行脫碳處理,在鋼的表面會形成一鐵素體層。該鐵素體層將以一定速率增厚,增厚的速度由通過表面鐵素體層的碳擴散速率來控制的。取擴散系數(shù)D = 3.6×10-7 cm2/s。試

18、分別用穩(wěn)態(tài)近似法和Wagner方法計算,表面鐵素體層長到1mm厚需要多長時間 ?簡要解答 設共析含C量為0.78(質量分數(shù)),A1=723。Wagner方法: , , , ,t = 133.9 h穩(wěn)態(tài)近似法:用Fick第一定律的近似公式求解: , 在這種情況下兩者的計算方法所得結果是相近的。15、含有0.3%C和1%Al的鋼,淬火后進行回火,然后在550氮化處理25小時。如果氮在-Fe中的溶解度為。問氮化層有多厚 ?簡要解答 氮化后鋼的表層組織是含有許多AlN顆粒的鐵素體。Al和N結合力很強,形成AlN,所以可由Al含量估算出N量。N在-Fe中的溶解度取決于氣體中N的活度,近似用表示。滲入的N

19、只有通過氮化層在與相的界面處發(fā)生反應而不斷生成AlN,使氮化層增厚。反應過程如圖所示。氮在-Fe中溶解度(550): ,%N = 0.402 ?;旧鲜菍儆诜€(wěn)態(tài)擴散問題,經質量平衡原理可得到: , 或 (質量分數(shù))式中,和分別為Al和N在鋼中的含量,Al原子量27,N原子量14。經查附表6有關數(shù)據(jù)有:,計算得 。 ,氮化層大約有1mm厚16、在緩慢冷卻過程中,亞共析鋼中已產生了鐵素體和珠光體交替隔開的帶狀組織,為消除這種帶狀組織,需要進行擴散退火。由實驗知,厚度為25mm的鋼板在900進行擴散處理,大約兩天就夠了。如果把這種鋼板進一步軋制成5mm厚的鋼板,并在1200進行擴散,問:需要處理多長

20、時間才能得到與前面同樣的效果 ? 假設Q=20000R。簡要解答 該問題就是使軋制后的振幅降為原來的1/5。達到同樣的效果,則: s ,假設Q=20000R,則:t = 215 s僅需要處理215秒時間就能得到與前面同樣的效果。17、在銀的表面已經沉積了一層銀的放射性元素,然后將整個系統(tǒng)進行退火,放射性元素將要擴散進入內部。為了使深度為L的地方得到最高的放射性元素,必須中止退火工藝。如在試樣表面沉積了m居里/cm2的放射性元素,計算在L處的最高濃度是多少 ?簡要解答 這是高斯解的問題,S = 2m居里/cm2 ,所以,方程式為:對上式求導,并令其為0 ,可得到 : , 代入方程得:18、在奧氏

21、體中硼(B)的含量對鋼的淬透性有很大的影響,即使只有0.001%的含量,對奧氏體轉變還有明顯的作用。假定在鋼的表面涂了一層硼,其量為1mg/cm2。把鋼加熱到900,保溫15分鐘進行奧氏體化,這時硼要向里面擴散。已知:硼的密度為2.34g/cm3, 硼在-Fe中的擴散系數(shù)尚未測定,假設硼是碳在-Fe中擴散系數(shù)的1/10,設碳在-Fe中擴散系數(shù)為D = D0exp(Q/RT),其中D0 = 0.372 cm2/s,Q=148000 J/mol。問硼對奧氏體轉變發(fā)生影響的表面層有多厚 ?簡要解答 根據(jù)題意,應用高斯解,求含0.001%B的深度。t=15×60=900 s高斯解:濃度單位需

22、要換算:將數(shù)據(jù)代入公式: y = 0.019cm = 0.19mm19、通過把一塊相當薄的A板夾在兩塊厚的B板中熱軋,制成一種復合板。如果在A板表面染上了一種物質C,因此,在復合板以后的退火工藝中,C物質將擴散進入A和B板復合板。設C物質在A和B板中有相同的溶解度與擴散系數(shù)。試計算:在什么時候在A層中心將會得到最高的C含量 ?這個數(shù)值有多高 ?簡要解答 根據(jù)題意,應采用兩個高斯解函數(shù),并設置如圖坐標。在y=d時,其濃度為:根據(jù)題意,要求得A層中心獲得最高C含量的時間t ,及最高C含量的值。對上式求導,并令其導數(shù)為0,可得: ,將其代入方程得:20、含0.5%C的碳素鋼不幸在750脫碳了,因此在

23、鋼的表面形成了一層鐵素體,經測定,它的厚度為0.1mm。如將此材料在保護氣氛中加熱到1000進行熱處理,碳將會由內向外表面擴散。為了使表面的碳含量達到0.2%,問需要熱處理多長時間 ? 已知:D = 0.372exp(148000/RT) cm2/s簡要解答 1000,樣品處于奧氏體狀態(tài)。根據(jù)題意,應該用兩個誤差解。設:近似設脫碳層中的碳含量為0,脫C層厚為h,如圖。初始條件和邊界條件為:t = 0, y<-h , 0.5=A-B-C; t = 0, -h<y<h , 0=A+B-C ; t = 0, y>h , 0.5=A+B+C A = 0.5 ,B = -0.25

24、 ,C = 0.25 。經計算D=0.31×10-6 cm2 / s 。 (該式也可以直接引用)現(xiàn)在要求y=0處,當C=0.2%時,所需要的時間t = ? .代入數(shù)據(jù): , 查表得: 該題也可用正弦解方法來求解,但計算結果有差別。21、含0.85%C的鋼制模具在空氣爐中加熱到900,保溫1小時,模具表面脫碳后的表面濃度為0%。模具技術條件要求模具表面最低含碳量為0.80%C。已知在900時碳的擴散系數(shù)為,=0.21cm2/s,=142×103 J/mol。試計算熱處理后模具的最小切削余量。簡要解答 可直接采用脫碳公式來計算。這里,C0 為0.85% ,C為0.80 ,t =

25、 3600s , 經計算D=0.94×10-7 cm2/ s 。 ,x=0.0493cm熱處理后模具的最小切削余量0.5mm 。 22、18-8型奧氏體不銹鋼如果被加熱到一臨界溫度范圍內,則對晶界腐蝕很敏感。在熱處理過程中,碳化鉻(主要是Cr23C6型)會在晶界上沉淀析出,沿著晶界產生一層貧鉻的奧氏體,從而失去了耐蝕性。1)假設:在12%Cr時,不銹鋼的耐蝕性就消失;熱處理過程為在600保溫10分鐘;在600時立即形成碳化鉻核心,而且吸收鉻是非常有效,以致在碳化鉻和奧氏體界面上的鉻全部消失;碳化鉻的厚度可忽略。已知:鉻在600時在奧氏體中的擴散系數(shù)為= 5×10-17 cm

26、2/s,試計算貧鉻層的厚度 ?2)假設該不銹鋼經600保溫10分鐘的處理后,碳化鉻析出已經穩(wěn)定,即以后不再析出碳化鉻了。如果要消除這已經產生的晶界貧鉻層,需要在這溫度下保溫多長時間 ?簡要解答 (1) 根據(jù)題意,類似于表面脫碳情況,可用誤差解。設一般表達式為:初始條件:C(y,0) = A + B erf () = A + B = 18邊界條件:C(0,t) = A + B erf (0) = A = 0 (當t 0 ,y = 0時) 。當y=l時,C=12, 因為只計算了晶界的半邊,所以實際晶界貧化區(qū)厚度為5.72nm(2) 近似地簡化晶界處貧化區(qū)的濃度分布,如圖。用兩個誤差解,由邊界條件有

27、:現(xiàn)在要求,當y = 0,C = 12時,t = ? 。這里的h即是上面求得的2.86nm.代入數(shù)據(jù):所以在600保溫10分鐘后,晶界上的貧化區(qū)厚度為5.72nm;為消除這貧化區(qū),需要在600保溫繼續(xù)保溫1小時左右即可消除。該題(2)也可用正弦解,這種情況用誤差解的誤差是比較大的。23、假定有一含0.2%C的碳素鋼,其中C主要存在于寬度為10微米()的帶狀珠光體組織中。有人企圖直接用高頻感應加熱淬火方法來硬化表面,假設高頻感應加熱淬火溫度為1000,時間為1秒。為了使奧氏體中碳含量的變化范圍控制在±0.01%C,估算一下這樣的加熱是否足夠 ?簡要解答 假設在1000高頻感應加熱條件下

28、,奧氏體形核非??臁?蓱谜医夥椒ü浪?。含C量均為質量分數(shù),C0為0.2% , Cmax 為7.14%(滲碳體中含C量,12/(56×3), Cmin 設為0 ,為0.001cm。擴散系數(shù)D采用D=0.372×exp(-148000 / RT) (cm2/s),計算得D = 3.1 × 10-7 cm2 / s 。利用振幅公式: ,t = 0.48 s高頻感應加熱淬火1000×1秒,可使奧氏體中碳含量變化范圍控制在±0.01%C。 24、有一塊含30%Zn的黃銅,其成分分布不均勻,在寬度為0.03mm的平行帶中的Zn含量為40%。設平行帶是等

29、距離分布的,在平行帶中間的Zn含量為29%。為了使其成分均勻,加熱到815退火,退火后允許Zn含量的最大偏差為±0.01%,問需要退火多長時間 ?已知:在815時,Zn的擴散系數(shù)為DZn = 6.86×10-10 cm2/s 。簡要解答 根據(jù)圖中所示的Zn在黃銅中的不均勻性分布情況,較適宜采用正弦解。由幾何關系,先需要計算出波長:因為L(30-29)= 0.003(40-29) ,所以L=0.033cm,實際擴散距離為=L/2=0.0165cm。根據(jù)對稱的方波基波振幅表達式可計算出基波的振幅。 ,其中= 其基波的振幅將隨時間而衰減,即: 0.5308×105 s

30、14.7h計算結果:要達到退火后偏離平均成分最大偏差為0.01%Zn,需要退火15小時左右。25、一奧氏體不銹鋼試樣在1000進行熱處理,不幸在開始1.5分鐘內,保護氣氛失效,以致在表面發(fā)生了滲碳。設氣氛為恒定碳勢,滲碳時不銹鋼表面的碳含量可達到1.0%C。但在不銹鋼中允許的碳含量應0.04% ,設碳在1000時的擴散系數(shù)為D = 3×10-7 cm2/s。1)由于碳的有害作用是由表向里擴展的,設原不銹鋼試樣中含碳量為0,試求滲碳1.5分鐘后,使試樣表面層的性能受到損害的深度是多少 ?2)在1.5分鐘后,保護氣氛恢復了作用。保護氣氛與不銹鋼之間沒有碳的交換。在1000長期保溫后,開始

31、1.5分鐘所吸收的碳會擴散到鋼的內部,在保溫期間,使鋼表層內含碳量達到的最大有害深度是多少 ?3)如果使碳在表層中的有害作用完全消除,問至少要保溫多長時間才可消除碳的有害影響?簡要解答 1)因為假設是在恒定碳勢下滲碳一分鐘,所以就可以用誤差函數(shù)解來求得深度。 計算結果:滲碳一分鐘后,使試樣表面層的性能受到損害的深度是0.127mm。2)長期保溫時,表面吸收的碳會向內部擴散(圖2.18)。但在一定范圍內,在深度處的濃度值是變化的(圖2.19)。若令,則可求得達到最高濃度時所需的時間。然后,再可求得最高濃度值與深度之間的關系,從而求得最大深度。在數(shù)學上即對函數(shù)求導可求得極值點位置及極值。這時的擴散

32、應該用高斯解。但不知高斯方程式中的S量。近似處理,S值可由前述的公式積分求得: 對高斯解有:令:可有: ,對應的即是最大深度。當然,在這里也可直接用平均擴散距離求得。將代入高斯解可得到:根據(jù)題意,要求的最大深度處的最大碳濃度為0.04%。計算S值時,為一分鐘。所以可得:代入有關數(shù)據(jù)后,可得:。計算結果:在保溫期間,使鋼表面層內含碳量達0.04%的最大深度是0.7mm。3)若使表層中碳的有害作用完全消除,則要求處的碳濃度要小于0.04%。隨著擴散的進行,表層的碳濃度逐漸下降,只要表層碳濃度小于0.04%,則其它地方就沒有問題了。仍然用高斯解,并且設,所以:因為S值已經知道,C=0.04%,所以時

33、間可求得:代入數(shù)據(jù)后,計算可得= 21875s = 6.08h 。計算結果:使碳在表層中的有害作用完全消除,至少要保溫6小時。 26、考慮銅合金固溶體的均勻化問題:1)設某銅-鋅合金的最高含鋅(Zn)量與平均含Zn量之差為5%Zn,最高含Zn量區(qū)與最小含Zn量區(qū)之間的距離為0.1mm。請使用公式計算使上述含Zn量之差降低到1%Zn所需的時間。已知:均勻化溫度為815,D0 = 2.1×10-5 m2 / s,Q=171×103 J/mol 。2) 如果是銅-鎳合金,情況同上,則需要多少時間 ?已知:在815時,鎳(Ni)在Cu中的擴散系數(shù)為D = 7×10-11

34、m2 / s 。為加快Cu-Ni合金的均勻化速度,縮短均勻化時間,可采用什么有效措施 ?簡要解答 題意的銅合金固溶體均勻化問題符合正弦分布條件。(1) cm2/s由振幅: ,所以:解得:t1 =3.47h(2)解得:t2 =64.72h為縮短均勻化時間,可通過軋制等工藝,使?jié)舛炔ㄩL變小,并且也使缺陷自多,有利于原子的擴散,這樣可使所需的時間大為減少。 27、有一時效硬鋁合金,在高溫固溶處理后淬火,然后在150時效強化。在時效過程中,形成了許多很細小的析出物。通常發(fā)現(xiàn):時效析出物的形成具有一定的速度,而且這速度常??煊诤辖鹪氐臄U散系數(shù)(D0 = 0.2 m2 / s ,Q=125×1

35、03 J/mol)所決定的速度。其原因是由于淬火使合金在低溫下保存了過量的空位。在較低的溫度,空位的平衡數(shù)量要下降,并且可用空位形成能E來描述,在鋁中E75×103 J/mol 。冷卻到低溫后,過剩的空位有消失的趨勢。如可以通過在晶界上的沉淀來實現(xiàn)。這樣,靠近晶界的空位將要快速下降,而且在那里的擴散系數(shù)將很快接近它的正常值。所以,在晶界附近的合金元素的擴散將減慢,其結果是沿著晶界會造成無沉淀區(qū)(Precipitation Free Zone,簡稱PFZ)。試驗表明,這種材料加熱到150時效保溫10分鐘,才觀察到有沉淀析出。試計算:在150時效時,在材料中這些無沉淀區(qū)的寬度。簡要解答

36、實際是研究晶界處空位濃度的變化規(guī)律。由于淬火使合金在低溫時保留了高溫時所產生的空位,因此在低溫時空位的平衡濃度有下降的趨勢。容易通過在晶界上的沉淀來實現(xiàn),這樣靠近晶界處的空位將快速減少,在那里的擴散系數(shù)將很快地接近它的正常值。所以,靠近晶界處的合金元素的擴散沉淀析出過程將大為減慢。其結果是沿著晶界會造成無沉淀區(qū)。由無沉淀區(qū)形成的機理可知,晶界上的空位濃度是很低的,可以認為是零。作為近似,可用誤差函數(shù)來計算空位的濃度分布。如圖所示,圖中的虛線部分是假想的濃度分布,主要是為了能正確地使用擴散公式。計算時,估計到空位濃度為C0 / 2處為止??瘴坏臄U散系數(shù)表達式為:式中,為時效溫度,是空位的擴散溫度

37、;為固溶處理的溫度,是產生高溫空位濃度的溫度;Q1為空位擴散遷移能Q1 = QE ;E是空位形成能。采用誤差函數(shù)解,設晶界處的空位濃度為0,晶內的空位濃度為C0,高溫時的空位濃度在冷卻時完全保留了下來。 , , = 1.76×10-12 cm2/s 3.12×10-5 cm = 0.312計算結果:晶界處無沉淀區(qū)寬度為0.624。 28、在白口鑄鐵中,碳的活度是很高的,因此有很高的石墨化驅動力?,F(xiàn)有一白口鑄鐵,其主要成分為:3.96%C,2.0%Si,1.0%Mn。已知,在900時Si在滲碳體與奧氏體的分配系數(shù)為零,而Mn的分配系數(shù)為2。試計算:在900處理時,石墨化驅動力

38、是否很高,以致反應可能快速進行,并且是由碳的擴散所控制。簡要解答 分別計算Mn、Si效應,再求得總效應碳活度 。先計算合金在初始狀態(tài)兩相的數(shù)量及其成分。假定奧氏體中的含C量與二元系中的相同。由鐵碳相圖知,900時與滲碳體相平衡的奧氏體的碳含量為1.23%(質量分數(shù))。所以有:滲碳體的分子式為Fe3C,所以,。利用杠桿原理可計算奧氏體和滲碳體的摩爾分數(shù):,因為Si不溶解于滲碳體中,所以。由質量平衡有: , 因為Mn和Fe的原子量幾乎相同,所以近似計算可有:由Mn的質量平衡得到: , 將此數(shù)值代入方程可得Mn的影響:由于Si與Mn同時存在,共同作用,所以其總的變化為: , 計算結果表明:加入1%M

39、n降低了碳的活度,使石墨化驅動力有所降低。 29、不同截面尺寸的Al-5%Cu合金試樣在單相區(qū)淬火加熱固溶處理,急劇快冷。根據(jù)圖示結果給出Al-5%Cu合金下述固溶體點陣常數(shù)和硬度變化特征的分析:(1)在單相區(qū)的淬火加熱溫度相同,但不同截面試樣淬火后固溶體點陣常數(shù)不同;(2)大直徑試樣在時效過程中得到的基體點陣常數(shù)比純鋁點陣常數(shù)0.4041nm更大;(3)時效開始階段硬度下降。簡要解答 (1)、(2):不同截面的試樣,冷卻速度不同,導致過飽和的空位濃度不同,所以使固溶體的點陣常數(shù)不同。另外,高溫的快速冷卻,存在很大的熱應力。兩組試樣的的點陣常數(shù)之差隨時效時間的增加而減少,這是熱應力在過程中不斷

40、地消除的緣故。大直徑試樣由于存在過飽和空位濃度,空位和溶質原子對結合,形成了GP區(qū),所以其點陣常數(shù)要比純鋁點陣常數(shù)大。(3)時效初期硬度下降,這與回復的發(fā)生有關。在淬火與測量之間的時間間隔內,就已經發(fā)生了自然時效的效果,但在時效初期,可產生回復現(xiàn)象,所以固溶體產生短暫的軟化傾向,表現(xiàn)為時效開始階段硬度下降。 30、某合金相形核核胚呈球形。設為臨界晶核自由能,為臨界晶核體積,系統(tǒng)自由能變化。試證明: 。簡要解答 ,令該式等于0,則得:, 31、試述具備熱彈性馬氏體合金的必要條件及機理。簡要解答 具備熱彈性馬氏體合金的必要條件:熱滯值很小,相變能量小,馬氏體和母相的比容接近,切變量較小,具有馬氏體

41、相變的可逆性。機理:發(fā)生熱彈性馬氏體相變時,馬氏體長大有一種化學力和機械彈性力之間的平衡。冷卻時,化學力增大,使M長大,直到彈性應變能與化學驅動力平衡;如加熱時,化學力減少,由于應變能是彈性的,所以界面會后退,M縮小。其界面是可滑動的。 32、假設在固態(tài)相變過程中,新相形核率和長大率G為常數(shù),經t時間后所形成新相的體積分數(shù)X可用Johnson-Mehl方程來描述,即:。已知形核率= 1000/ cm3s,長大率G=3×10-5cm/s。試計算:(1)發(fā)生相變速度最快的時間;(2)過程中的最大相變速度;(3)獲得50%轉變量所需的時間。簡要解答 問題比較簡單,只是正確進行數(shù)學運算和對概

42、念的正確立即即可。(1)對Johnson-Mehl方程求導:令二階導數(shù)為0,可得到:(2)將t = 403s代入一階導數(shù),可求得最大相變速率:= 3.51 × 10-3 cm2 / s(3) t = 395 s33、試用能量或擴散觀點解釋下列現(xiàn)象:(1)過飽和固溶體脫溶過程中,往往會產生中間過渡相。(2)脫溶沉淀相的形貌有球狀、片狀、針狀等形態(tài)。(3)Al-Ag等時效合金往往在晶界附近產生無沉淀析出區(qū)。(4)含有第二相粒子耐熱合金的設計,對第二相組元的擴散系數(shù)D、第二相與基體的界面能、第二相組元在基體中的固溶度C0 ,一般都要求盡可能地小。(5)晶界先共析鐵素體增長的動力學為線性,而增厚動力學

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論