基本不等式很全面_第1頁
基本不等式很全面_第2頁
基本不等式很全面_第3頁
基本不等式很全面_第4頁
基本不等式很全面_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、基本不等式【知識(shí)框架】1、基本不等式原始形式(1)若,則 (2)若,則2、基本不等式一般形式(均值不等式)若,則3、基本不等式的兩個(gè)重要變形(1)若,則(2)若,則總結(jié):當(dāng)兩個(gè)正數(shù)的積為定植時(shí),它們的和有最小值; 當(dāng)兩個(gè)正數(shù)的和為定植時(shí),它們的積有最小值;特別說明:以上不等式中,當(dāng)且僅當(dāng)時(shí)取“=”4、求最值的條件:“一正,二定,三相等”5、常用結(jié)論(1)若,則 (當(dāng)且僅當(dāng)時(shí)取“=”)(2)若,則 (當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則 (當(dāng)且僅當(dāng)時(shí)取“=”)(4)若,則(5)若,則特別說明:以上不等式中,當(dāng)且僅當(dāng)時(shí)取“=”6、柯西不等式 (1)若,則(2)若,則有:(3)設(shè)是兩組實(shí)數(shù),則有【題型歸

2、納】題型一:利用基本不等式證明不等式題目1、設(shè)均為正數(shù),證明不等式:題目2、已知為兩兩不相等的實(shí)數(shù),求證:題目3、已知,求證:題目4、已知,且,求證:題目5、已知,且,求證:題目6、(新課標(biāo)卷數(shù)學(xué)(理)設(shè)均為正數(shù),且,證明:(); ().題型二:利用不等式求函數(shù)值域題目1、求下列函數(shù)的值域(1) (2)(3) (4)題型三:利用不等式求最值 (一)(湊項(xiàng)) 1、已知,求函數(shù)的最小值;變式1:已知,求函數(shù)的最小值;變式2:已知,求函數(shù)的最大值;變式3:已知,求函數(shù)的最大值;練習(xí):1、已知,求函數(shù)的最小值; 題目2、已知,求函數(shù)的最大值;題型四:利用不等式求最值 (二)(湊系數(shù))題目1、當(dāng)時(shí),求的

3、最大值;變式1:當(dāng)時(shí),求的最大值;變式2:設(shè),求函數(shù)的最大值。題目2、若,求的最大值;變式:若,求的最大值;題目3、求函數(shù)的最大值;變式:求函數(shù)的最大值;題型五:巧用“1”的代換求最值問題題目1、已知,求的最小值;變式1:已知,求的最小值;變式2:已知,求的最小值;變式3:已知,且,求的最小值。變式4:已知,且,求的最小值;變式5:(1)若且,求的最小值;(2)若且,求的最小值;變式6:已知正項(xiàng)等比數(shù)列滿足:,若存在兩項(xiàng),使得,求的最小值;變式7:若正數(shù)x,y滿足x3y5xy,則3x4y的最小值是( )() A. B. C5 D6變式8:設(shè)若的最小值為 ( )A B1 C4 D8變式9:已知,

4、且,則的最小值為 變式10:已知,求的最小值.變式11:求的最小值變式12:已知,求函數(shù)的最小值變式13:設(shè)正實(shí)數(shù) 滿足的最小值為 變式14:【2013天津理】設(shè)a + b = 2, b>0, 則當(dāng)a = 時(shí), 取得最小值.變式15:設(shè) 滿足,則的最小值為 變式16:已知且,則的最小值是 .題型六:分離換元法求最值(了解)題目1、求函數(shù)的值域;變式:求函數(shù)的值域;題目2、求函數(shù)的最大值;變式:求函數(shù)的最大值;題型七:基本不等式的綜合應(yīng)用題目1、已知,求的最小值題目2、已知,求的最小值;變式1:(2010四川)如果,求關(guān)于的表達(dá)式的最小值;變式2:(2012湖北武漢診斷)已知,當(dāng)時(shí),函數(shù)的

5、圖像恒過定點(diǎn),若點(diǎn)在直線上,求的最小值;變式3:【2017天津】若,則的最小值為 題目3、已知,求最小值;變式1:已知,滿足,求范圍;變式2:已知,求最大值;(提示:通分或三角換元)變式3:已知,求最大值;題目4、(2013年山東(理)設(shè)正實(shí)數(shù)滿足,則當(dāng)取得最大值時(shí),的最大值為( )()A B C D變式:設(shè)是正數(shù),滿足,求的最小值;題型八:利用基本不等式求參數(shù)范圍題目1、已知,且恒成立,求正實(shí)數(shù)的最小值;2、已知且恒成立,如果,求的最大值;(參考:4)變式:已知滿則,若恒成立,求的取值范圍;題型九:利用柯西不等式求最值1、二維柯西不等式 若,則2、二維形式的柯西不等式的變式3、二維形式的柯西不等式的向量形式4、三維柯西不等式若,則有:5、一般維柯西不等式設(shè)是兩組實(shí)數(shù),則有:【題型歸納】題型一:利用柯西不等式一般形式求最值題目1、設(shè),若,則的最小值為時(shí), 析: 最小值為此時(shí) ,題目2、設(shè),求的最小值,并求此時(shí)之值。:題目3、設(shè),求之最小值為 ,此時(shí) (析:)題目4、已知?jiǎng)t的最小值是 (

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論