版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、數(shù) 學20063本試卷分第卷(選擇題)和第卷(非選擇題)兩部分第卷為第1頁至第2頁,第卷為第3頁至第5頁滿分150分,考試時間120分鐘第卷 (選擇題,共50分)注意事項: 1答第卷前,考生務必將自己的姓名、考號、考試科目用2B鉛筆涂寫在小答題卡上同時,用黑色鋼筆將姓名、考號、座位號填寫在模擬答題卡上2每小題選出答案后,用2B鉛筆把模擬答題卡上對應題目的答案標號涂黑;最后,用2B鉛筆將模擬答題卡上的答案轉(zhuǎn)涂到小答題卡上,不能答在試題卷上3考試結(jié)束后,將模擬答題卡和小答題卡一并交回參考公式:(1)如果事件A、B互斥,那么P(AB)P(A)P(B); (2)如果事件A、B相互獨立,那么P(AB)P
2、(A)P(B);一選擇題:本大題共10小題;每小題5分,共50分在每小題給出的四個選項中,有且只有一項是符合題目要求的1.在復平面內(nèi),復數(shù)所對應的點位于 2是不等式成立的 3. 已知直線及三個平面,給出下列命題:若/,/,則若,則若 則若,則其中真命題是 A. B. C. D. 4. 已知實數(shù)、滿足約束條件,則的最大值為 A. 24 B. 20 C. 16 D. 125. 已知R上的奇函數(shù)在區(qū)間(,0)內(nèi)單調(diào)增加,且,則不等式的解集為 A. B.C. D.6.某學校要派遣6位教師中的4位去參加一個學術會議,其中甲、乙兩位教師不能同時參加,則派遣教師的不同方法數(shù)共有 A7種B8種C9種D10種7
3、. 按向量平移函數(shù)的圖象,得到函數(shù)的圖象,則A. B. C. D.8. 函數(shù)(R)由確定,則導函數(shù)圖象的大致形狀是A. B. C.D.9. 曲線上的點到點與到軸的距離之和為則的最小值是 A.B.C.D.10. 若點是半徑為的球面上三點,且,則球心到平面的距離之最大值為 A.B. C. D. 第卷(非選擇題共100分)注意事項: 第卷全部是非選擇題,必須在答題卡非選擇題答題區(qū)域內(nèi),用黑色鋼筆或簽字筆作答,不能答在試卷上,否則答案無效二 填空題:本大題共4小題;每小題5分,共20分 11將容量為50的樣本數(shù)據(jù),按從小到大的順序分成4組,如下表:組號1234頻數(shù)111413則第3組的頻率為 .12.
4、 .13.圓的圓心坐標為,設是該圓的過點的弦的中點,則動點的軌跡方程是.14將給定的25個數(shù)排成如右圖所示的數(shù)表,若每行5個數(shù)按從左至右的順序構(gòu)成等差數(shù)列,每列的5個數(shù)按從上到下的順序也構(gòu)成等差數(shù)列,且表正中間一個數(shù)a331,則表中所有數(shù)之和為. 三解答題:本大題6小題,共80分解答應寫出文字說明,證明過程或演算步驟15(本小題滿分13分)已知向量, , .()若,求向量、的夾角;()當時,求函數(shù)的最大值.16(本小題滿分13分)已知袋中裝有大小相同的2個白球和4個紅球.()從袋中隨機地將球逐個取出,每次取后不放回,直到取出兩個紅球為止,求取球次數(shù)的數(shù)學期望;()從袋中隨機地取出一個球,放回后
5、再隨機地取出一個球,這樣連續(xù)取4次球,求共取得紅球次數(shù)的方差.17 (本小題滿分13分)如圖,邊長為2的等邊PCD所在的平面垂直于矩形ABCD所在的平面,BC,M為BC的中點.()證明:AMPM;()求二面角PAMD的大小;()求點D到平面AMP的距離.18(本題滿分14分)已知函數(shù)的圖象與函數(shù)的圖象相切,記.()求實數(shù)的值及函數(shù)的極值;()若關于的方程恰有三個不等的實數(shù)根,求實數(shù)的取值范圍.19.(本題滿分13分)已知橢圓的兩條準線與雙曲線的兩條準線所圍成的四邊形之面積為直線與雙曲線的右支相交于兩點(其中點在第一象限),線段與橢圓交于點為坐標原點(如圖所示).(I)求實數(shù)的值; (II)若,
6、的面積,求直線l的方程.20(本題滿分14分)已知數(shù)列的前項和 滿足:數(shù)列的通項公式為 (I)求數(shù)列的通項公式;(II)試比較與的大小,并加以證明;(III)是否存在圓心在軸上的圓C及互不相等的正整數(shù)使得三點落在圓C上?說明理由.2006年深圳市高三年級第一次調(diào)研考試(數(shù)學)答案及評分標準說明:一本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分標準制訂相應的評分細則二對計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定給分,但不得超過該部分正確解答應得分數(shù)的一半;如果后續(xù)部分的解答有較嚴重的錯誤,就
7、不再給分三解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù)四只給整數(shù)分數(shù),選擇題和填空題不給中間分數(shù)一選擇題:本大題每小題5分,滿分50分1.D 2. A 3. C 4. B 5. B 6. C 7. A8. C 9. B 10. D 二填空題:本大題每小題5分,滿分20分11. 12. 13. ;14. 三解答題:本大題滿分80分15(本小題滿分13分)已知向量, , .()若,求向量、的夾角;()當時,求函數(shù)的最大值.解: ()當時,2分3分4分6分() 8分10分,故11分當,即時, 13分16(本小題滿分13分)已知袋中裝有大小相同的2個白球和4個紅球.()從袋中隨機地將球逐個取
8、出,每次取后不放回,直到取出兩個紅球為止,求取球次數(shù)的數(shù)學期望;()從袋中隨機地取出一個球,放回后再隨機地取出一個球,這樣連續(xù)取4次球,求共取得紅球次數(shù)的方差.解:() 依題意,的可能取值為2,3,4 1分; 3分; 5分; 7分. 故取球次數(shù)的數(shù)學期望為8分() 依題意,連續(xù)摸4次球可視作4次獨立重復試驗,且每次摸得紅球的概率均為,則頁:610分. 故共取得紅球次數(shù)的方差為13分17 (本小題滿分13分)如圖,邊長為2的等邊PCD所在的平面垂直于矩形ABCD所在的平面,BC,M為BC的中點.()證明:AMPM;()求二面角PAMD的大??;()求點D到平面AMP的距離.解法1:() 取CD的中
9、點E,連結(jié)PE、EM、EAPCD為正三角形PECD,PE=PDsinPDE=2sin60=平面PCD平面ABCDPE平面ABCD 3分四邊形ABCD是矩形ADE、ECM、ABM均為直角三角形由勾股定理可求得EM=,AM=,AE=35分AME=90AMPM 6分()由()可知EMAM,PMAMPME是二面角PAMD的平面角8分tan PME=PME=45二面角PAMD為45; 10分()設D點到平面PAM的距離為,連結(jié)DM,則11分而在中,由勾股定理可求得PM=.,所以:,.即點D到平面PAM的距離為.13分解法2:() 四邊形ABCD是矩形BCCD平面PCD平面ABCDBC平面PCD2分而PC
10、平面PCDBCPC同理ADPD在RtPCM中,PM=同理可求PA=,AM=5分PMA=90即PMAM 6分()取CD的中點E,連結(jié)PE、EMPCD為正三角形PECD,PE=PDsinPDE=2sin60=平面PCD平面ABCDPE平面ABCD由() 可知PMAMEMAMPME是二面角PAMD的平面角8分sin PME=PME=45二面角PAMD為45; 10分()同解法()解法3:() 以D點為原點,分別以直線DA、DC為x軸、y軸,建立如圖所示的空間直角坐標系,依題意,可得2分4分即,AMPM. 6分 ()設,且平面PAM,則 即取,得6分取,顯然平面ABCD結(jié)合圖形可知,二面角PAMD為4
11、5;10分() 設點D到平面PAM的距離為,由()可知與平面PAM垂直,則=.即點D到平面PAM的距離為.13分18(本題滿分14分)已知函數(shù)的圖象與函數(shù)的圖象相切,記.()求實數(shù)的值及函數(shù)的極值;()若關于的方程恰有三個不等的實數(shù)根,求實數(shù)的取值范圍.解:()依題意,令函數(shù)的圖象與函數(shù)的圖象的切點為2分將切點坐標代入函數(shù)可得 . 5分或:依題意得方程,即有唯一實數(shù)解2分故,即5分,故,令,解得,或. 8分列表如下 : -遞增極大值遞減極小值0遞增從上表可知在處取得極大值,在處取得極小值. 10分()由()可知函數(shù)大致圖象如下圖所示.12分作函數(shù)的圖象,當?shù)膱D象與函數(shù)的圖象有三個交點時, 關于
12、的方程恰有三個不等的實數(shù)根.結(jié)合圖形可知:14分19.(本題滿分13分)已知橢圓的兩條準線與雙曲線的兩條準線所圍成的四邊形之面積為直線與雙曲線的右支相交于兩點(其中點在第一象限),線段與橢圓交于點為坐標原點(如圖所示). (I)求實數(shù)的值; (II)若,的面積,求直線的方程.(I)解:由題意知橢圓的焦點在軸上,1分橢圓的兩條準線的方程為和,這兩條準線相距3分雙曲線的兩條準線的方程為和,這兩條準線相距. 4分上述四條準線所圍成的四邊形是矩形, 由題意知故實數(shù)的值是.5分(II)設由及在第一象限得解得即8分 設則由得,即10分 聯(lián)解得,或因點在雙曲線的右支,故點的坐標為. 11分由得直線的方程為即13分20(本題滿分14分)已知數(shù)列的前和滿足:數(shù)列的通項公式為 (I)求數(shù)列的通項公式;(II)試比較與的大小,并加以證明;(III)是否存在圓心在軸上的圓C及互不相等的正整數(shù)使得三點落在圓C上?說明理由.解:(I)兩式相減得2分又即數(shù)列是首項為公比為的等比數(shù)列,其通項公式是4分另解一:即數(shù)列是首項為公比為的等比數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024異地戀愛合同范本
- 焊工滅火知識培訓課件
- 2024雕塑制作合同協(xié)議書范本
- 專業(yè)化交通違法車輛拖行服務2024協(xié)議范本版B版
- 《畜禽病理學》課件
- 2024年跨區(qū)域生態(tài)環(huán)境保護補償協(xié)議
- 浙江農(nóng)業(yè)商貿(mào)職業(yè)學院《機械結(jié)構(gòu)創(chuàng)新設計》2023-2024學年第一學期期末試卷
- 中南林業(yè)科技大學涉外學院《外景采集與創(chuàng)作》2023-2024學年第一學期期末試卷
- 2024年綠色建筑墻面裝飾工程勞務分包合同2篇
- 2024幼兒園施工環(huán)保技術咨詢服務合同3篇
- 【市質(zhì)檢】泉州市2025屆高中畢業(yè)班質(zhì)量監(jiān)測(二) 語文試卷(含官方答案)
- 2025年湖南湘西州農(nóng)商銀行招聘筆試參考題庫含答案解析
- (完整)領導干部任前廉政法規(guī)知識考試題庫(含答案)
- 《小學教育中家校合作存在的問題及完善對策研究》7200字(論文)
- 2025年國務院發(fā)展研究中心信息中心招聘2人高頻重點提升(共500題)附帶答案詳解
- 人工智能算法模型定制開發(fā)合同
- 申請行政復議的申請書范文模板
- 【MOOC期末】《形勢與政策》(北京科技大學)期末慕課答案
- 2024年醫(yī)療健康知識科普視頻制作合同3篇
- 2024年古董古玩買賣協(xié)議6篇
- QC/T 1209-2024汽車噪聲與振動(NVH)術語和定義
評論
0/150
提交評論