新人教版軸對(duì)稱導(dǎo)學(xué)案_第1頁(yè)
新人教版軸對(duì)稱導(dǎo)學(xué)案_第2頁(yè)
新人教版軸對(duì)稱導(dǎo)學(xué)案_第3頁(yè)
新人教版軸對(duì)稱導(dǎo)學(xué)案_第4頁(yè)
新人教版軸對(duì)稱導(dǎo)學(xué)案_第5頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、13.1 軸對(duì)稱(1)一、學(xué)習(xí)目標(biāo)1、認(rèn)識(shí)軸對(duì)稱和軸對(duì)稱圖形,并能找出對(duì)稱軸;2、知道軸對(duì)稱和軸對(duì)稱圖形的區(qū)別和聯(lián)系。二、溫故知新(口答)1、如圖(1),平分,則=_=_。2、如圖(2), ABD ACD,AB與 AC是對(duì)應(yīng)邊。試說出這兩個(gè)三角形的對(duì)應(yīng)頂點(diǎn)和對(duì)應(yīng)邊。ACBD圖(2)ACBO圖(1)觀察上面兩個(gè)圖形,你能發(fā)現(xiàn)它們有什么共同的的特點(diǎn)嗎 ?三、自主探究 合作展示探究(一)自學(xué)課本29頁(yè),完成以下問題。1、 什么是軸對(duì)稱圖形?你能舉幾個(gè)軸對(duì)稱圖形的例子嗎?2、試一試:下面的圖形是軸對(duì)稱圖形嗎?如果是,指出它的對(duì)稱軸。(1) (2) (3) (4) (5)探究(二) 自學(xué)課本30頁(yè),完成

2、以下問題。1、什么叫做兩個(gè)圖形成軸對(duì)稱?你能舉幾個(gè)生活中兩個(gè)圖形成軸對(duì)稱的例子嗎?2、 下面給出的每幅圖中的兩個(gè)圖案是軸對(duì)稱的嗎?如果是,試著找出它們的對(duì)稱軸,并找出一對(duì)對(duì)稱點(diǎn)探究(三)問題:成軸對(duì)稱的兩個(gè)圖形全等嗎?如果把一個(gè)軸對(duì)稱圖形沿對(duì)稱軸分成兩個(gè)圖形,那么這兩個(gè)圖形全等嗎?這兩個(gè)圖形對(duì)稱嗎?歸納:區(qū)別:軸對(duì)稱圖形指的是_個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相_。軸對(duì)稱指的是_個(gè)圖形沿一條直線折疊 ,這個(gè)圖形能夠與另一個(gè)圖形_。聯(lián)系:把成軸對(duì)稱的兩個(gè)圖形看成一個(gè)整體,它就是一個(gè)_;把一個(gè)軸對(duì)稱圖形沿對(duì)稱軸分成兩個(gè)圖形,這兩個(gè)圖形關(guān)于這條直線對(duì)稱(簡(jiǎn)稱軸對(duì)稱)四、雙基檢測(cè)1、軸對(duì)稱圖

3、形的對(duì)稱軸的條數(shù)( ) A.只有1條 B.2條 C.3條 D.至少一條2、下列圖形中對(duì)稱軸最多的是( ) A.圓 B.正方形 C.角 D.線段3、如下圖,從幾何圖形的性質(zhì)考慮,哪一個(gè)與其他三個(gè)不同?請(qǐng)指出這個(gè)圖形,并簡(jiǎn)述你的理由.答:圖形 ;理由是: .4、標(biāo)出下列圖形中點(diǎn)A、B、C的對(duì)稱點(diǎn)。5、下列圖形是否是軸對(duì)稱圖形,如果是,找出軸對(duì)稱圖形的所有對(duì)稱軸。思考:正三角形有條對(duì)稱軸; 正四邊形有條對(duì)稱軸; 正五邊形有條對(duì)稱軸; 正六邊形有條對(duì)稱軸;正n邊形有條對(duì)稱軸;當(dāng)n越來越大時(shí),正多邊形接近于什么圖形?它有多少條對(duì)稱軸?13.1 軸對(duì)稱(2)一、學(xué)習(xí)目標(biāo)1、掌握軸對(duì)稱的性質(zhì);2、會(huì)利用線段

4、垂直平分線的性質(zhì)及判定解決有關(guān)問題。二、溫故知新1、 下面的圖形是軸對(duì)稱圖形嗎?如果是,請(qǐng)說出它的對(duì)稱軸。2、如下圖,ABC和ABC關(guān)于直線對(duì)稱,那么這兩個(gè)圖形有什么關(guān)系? 圖(1)三、自主探究 合作展示探究(一)1、如圖(1),ABC和ABC關(guān)于直線MN對(duì)稱,點(diǎn)A、B、C分別是點(diǎn)A、B、C的對(duì)稱點(diǎn),線段AA、BB、CC與直線MN有什么關(guān)系?(1)設(shè)AA交對(duì)稱軸MN于點(diǎn)P,將ABC和ABC沿MN折疊后,點(diǎn)A與A重合嗎?于是有PA ,MPA 度(2)對(duì)于其他的對(duì)應(yīng)點(diǎn),如點(diǎn)B,B;C,C也有類似的情況嗎?(3)那么MN與線段AA,BB,CC的連線有什么關(guān)系呢?2、垂直平分線的定義:經(jīng)過線段 并且

5、這條線段的直線,叫做這條線段的垂直平分線.3、軸對(duì)稱的性質(zhì):如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么 是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的 。類似地,軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的 。探究(二)1、作出線段AB,過AB中點(diǎn)作AB的垂直平分線,在上取P1、P2、P3,連結(jié)AP1、AP2、BP1、BP2、CP1、CP22、作好圖后,用直尺量出AP1、AP2、BP1、BP2、CP1、CP2討論發(fā)現(xiàn)什么樣的規(guī)律總結(jié)線段垂直平分線的性質(zhì) : 圖(2)3、你能利用判定兩個(gè)三角形全等的方法證明這個(gè)性質(zhì)嗎?如圖(2),直線,垂足是,點(diǎn)在上。求證: 探究(三)1、 作線段AB,取其中點(diǎn)P,過P作,在上取點(diǎn)P1、

6、P2,連結(jié)AP1、AP2、BP1、BP2會(huì)有哪些可能?要使L與AB垂直,AP1、AP2、BP1、BP2應(yīng)滿足什么條件?由此你得到什么結(jié)論?2、 你能證明這個(gè)結(jié)論嗎?新知應(yīng)用:例題:如圖(3),在ABC中,DE是AC的垂直平分線,AE3cm,ABD的周長(zhǎng)為13cm,求ABC的周長(zhǎng)。圖(3)例題反思:四、雙基檢測(cè)1、點(diǎn)P是ABC中邊AB的垂直平分線上的點(diǎn),則一定有( )A PB=PC B.PA=PC C.PA=PB D.點(diǎn)P到ABC的兩邊距離相等2、下列說法錯(cuò)誤的是( )A. D、E是線段AB的垂直平分線上的兩點(diǎn),則 AD=BD,AE=BE圖(4)B若AD=BD,AE=BE,則直線DE是線段AB的

7、垂直平分線C若PA=PB,則點(diǎn)P在線段AB的垂直平分線上D.若PA=PB,則過點(diǎn)P的直線是線段AB的垂直平分線3、如圖(4),AB=AC,MB=MC直線AM是線段BC的垂直平分線嗎?13.1 軸對(duì)稱(3)一、學(xué)習(xí)目標(biāo)1、會(huì)依據(jù)軸對(duì)稱的性質(zhì)找出兩個(gè)圖形成軸對(duì)稱及軸對(duì)稱圖形的對(duì)稱軸;2、掌握作出軸對(duì)稱圖形的對(duì)稱軸的方法,即線段垂直平分線的尺規(guī)作圖。二、溫故知新(口答)1、下面的圖形是軸對(duì)稱圖形嗎?如果是,請(qǐng)說出它的對(duì)稱軸。2、如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì) 所連 的 線.3、與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的 上。三、自主探究 合作展示【問題】1、 如果我們感覺兩個(gè)圖

8、形是成軸對(duì)稱的,你準(zhǔn)備用什么方法去驗(yàn)證?2、 兩個(gè)成軸對(duì)稱的圖形,不經(jīng)過折疊,你有什么方法畫出它的對(duì)稱軸?歸納:作軸對(duì)稱圖形的對(duì)稱軸的方法是:找到一對(duì) ,作出連接它們的 的 線,就可以得到這兩個(gè)圖形的對(duì)稱軸【新知應(yīng)用】例題1:如圖(1),點(diǎn)A和點(diǎn)B關(guān)于某條直線成軸對(duì)稱,圖(1)你能作出這條直線嗎?1、請(qǐng)同學(xué)們按照以下作法在圖(1)中完成作圖。作法: (1)分別以點(diǎn)A、B為圓心,以大于AB的長(zhǎng)為半徑作弧,兩弧相交于C和D兩點(diǎn); (2)作直線CD直線CD即為所求的直線2、思考:(1)在上述作法中,為什么要以“大于AB的長(zhǎng)”為半徑作弧? (2)在上面作法的基礎(chǔ)上,連接AB, 直線CD是線段AB的垂直

9、平分線嗎?并說明理由例題反思:圖(2)例題2:如圖(2),在五角星上作出它的一條對(duì)稱軸。例題反思:四、雙基檢測(cè)1、如圖(3),下面的虛線中,哪些是圖形的對(duì)稱軸,哪些不是?圖(3)圖(4)2、如圖(4),畫出圖形的一條對(duì)稱軸,和同學(xué)比較一下,你們畫的對(duì)稱軸一樣嗎?圖(5)3、如圖(5),角是軸對(duì)稱圖形嗎?如果是,畫出它的對(duì)稱軸。4、如圖(6),與圖形A成軸對(duì)稱的是哪個(gè)圖形?畫出它們的對(duì)稱軸圖(6)13.2.1 作軸對(duì)稱圖形(1)一、學(xué)習(xí)目標(biāo)1、認(rèn)識(shí)軸對(duì)稱圖形,探索并了解它的基本性質(zhì);2、能夠按要求作出簡(jiǎn)單平面圖形經(jīng)過一次對(duì)稱后的圖形;3、能利用軸對(duì)稱進(jìn)行圖案設(shè)計(jì)。二、溫故知新(口答)1、什么是軸

10、對(duì)稱圖形?2、請(qǐng)畫出下列圖形的對(duì)稱軸。三、自主探究 合作展示探究(一)自學(xué):認(rèn)真閱讀教材P39的四輻圖。1、操作:自己動(dòng)手在紙上畫一個(gè)圖案,將這張紙折疊,描圖,再打開紙,看看你得到了什么?改變折痕的位置再試一次,你又得到了什么?2、歸納: (1)由一個(gè)平面圖形可以得到它關(guān)于一條直線成軸對(duì)稱的圖形,這個(gè)圖形與原圖形的 、 完全相同;(2)新圖形上的每一點(diǎn),都是原圖形上的某一點(diǎn)關(guān)于直線的 點(diǎn);(3)連接任意一對(duì)對(duì)應(yīng)點(diǎn)的線段被對(duì)稱軸 。探究(二)1、請(qǐng)同學(xué)們嘗試解決以下問題;如圖(1),實(shí)線所構(gòu)成的圖形為已知圖形,虛線為對(duì)稱軸,請(qǐng)畫出已知圖形的軸對(duì)稱圖形。圖(1)問題:(1)你可以通過什么方法來驗(yàn)證

11、你畫的是否正確? (2)和其他同學(xué)比較一下,你的方法是最簡(jiǎn)單的嗎? 2、如圖(2),已知點(diǎn)A和直線,試畫出點(diǎn)A關(guān)于直線的對(duì)稱點(diǎn)A。 A·圖(2) 3、例題:如圖(3)已知ABC,直線,畫出ABC關(guān)于直線的對(duì)稱圖形。圖(3)例題反思:四、雙基檢測(cè)1、把下列圖形補(bǔ)成關(guān)于對(duì)稱的圖形。2、小明在平面鏡中看到身后墻上鐘表顯示的時(shí)間是12:15,這時(shí)的實(shí)際時(shí)間應(yīng)該是 。3、為美化校園,學(xué)校準(zhǔn)備在一塊圓形空地上建花壇,現(xiàn)征集設(shè)計(jì)方案,要求設(shè)計(jì)的圖案由圓、三角形、矩形組成(三種幾何圖案的個(gè)數(shù)不限),并且使整個(gè)圓形場(chǎng)地成軸對(duì)稱圖形,請(qǐng)你畫出你的設(shè)計(jì)方案13.2.1 作軸對(duì)稱圖形(2)一、學(xué)習(xí)目標(biāo)1、能

12、夠按要求作出簡(jiǎn)單平面圖形經(jīng)過軸對(duì)稱后的圖形;2、能夠用軸對(duì)稱的知識(shí)解決生活中的實(shí)際問題。二、溫故知新1、把下列圖形補(bǔ)成關(guān)于對(duì)稱的圖形。2、仔細(xì)觀察第三個(gè)圖形,你能盡可能多的從圖中找出一些線段之間的關(guān)系嗎?三、自主探究 合作展示探究(一)圖(2)BA1、 如圖(1)要在燃?xì)夤艿郎闲藿ㄒ粋€(gè)泵站,分別向A、B兩鎮(zhèn)供氣泵站修在管道的什么地方,可使所用的輸氣管線最短?圖(1)2、請(qǐng)同學(xué)們?nèi)我馊↑c(diǎn)探究,并完成下列表格。=1=2=3=43、通過以上探究,你發(fā)現(xiàn)什么規(guī)律嗎?4、根據(jù)你發(fā)現(xiàn)的規(guī)律,在圖(2)中完成本題。探究(二)問題為什么在P點(diǎn)的位置修建泵站,就能使所用的輸氣管線最短呢?四、雙基檢測(cè)圖(3)(9

13、9A1、如圖(3),在鐵路的同側(cè)有兩個(gè)工廠A、B,要在路邊建一個(gè)貨場(chǎng)C,使A、B兩廠到貨場(chǎng)C的距離的和最小問點(diǎn)C的位置如何選擇?2、如圖(4),如果我們把臺(tái)球桌做成等邊三角形的形狀,那么從AC的中點(diǎn)D處發(fā)出的球,能否依次經(jīng)BC,AB兩邊反射后回到D處?如果認(rèn)為不能,請(qǐng)說明理由;如果認(rèn)為能,請(qǐng)作出球的運(yùn)動(dòng)路線。ADBC圖(4)B3、如圖(5),A為馬廄,B為帳篷,牧馬人某一天要從馬廄牽出馬,先到草地邊某一處牧馬,再到河邊飲水,然后回到帳篷,請(qǐng)你幫他確定這一天的最短路線。圖(5)13.2.2 用坐標(biāo)表示軸對(duì)稱一、學(xué)習(xí)目標(biāo)1、能夠經(jīng)過探索利用坐標(biāo)來表示軸對(duì)稱; 2、掌握關(guān)于軸、軸對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn)。

14、二、溫故知新圖(1)如圖:(1)觀察圖(1)中兩個(gè)圓臉有什么關(guān)系?(2)若已知圖(1)中圓臉右眼的坐標(biāo)為(4,3),左眼的坐標(biāo)為(2,3),嘴角兩個(gè)端點(diǎn),右端點(diǎn)的坐標(biāo)為(4,1),左端點(diǎn)的坐標(biāo)為(2,1)你能根據(jù)軸對(duì)稱的性質(zhì)寫出左邊圓臉上左眼,右眼及嘴角兩端點(diǎn)的坐標(biāo)嗎?三、自主探究 合作展示探究(一)1、 在如圖(2)所示平面直角坐標(biāo)系內(nèi)畫出下列已知點(diǎn)以及對(duì)稱點(diǎn),并把坐標(biāo)填在表格中,你能發(fā)現(xiàn)坐標(biāo)間有什么規(guī)律?已知點(diǎn)A(2,3)B(1,2)C(6,5)D(0.5,1)E(4,0)關(guān)于軸對(duì)稱的點(diǎn)( )( )( )( )( )關(guān)于軸對(duì)稱的點(diǎn)( )( )( )( )( )2、歸納:點(diǎn)(,)關(guān)于軸對(duì)稱的

15、點(diǎn)的坐標(biāo)是 ;點(diǎn)(,)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)是 圖(2)圖(3)探究(二)例題:如圖(3),四邊形ABCD的四個(gè)頂點(diǎn)的坐標(biāo)分別為A(5,1),B(2,1),C(2,5),D(5,4),分別作出四邊形ABCD關(guān)于軸和軸對(duì)稱的圖形。例題反思:四、雙基檢測(cè)1、分別寫出下列各點(diǎn)關(guān)于軸和軸對(duì)稱的點(diǎn)的坐標(biāo)。(3,6)(-7,9)(-3,-5)(6,-1)(0,10)關(guān)于軸對(duì)稱的點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)2、已知點(diǎn)(2a+b,-3a)與點(diǎn)(8,b+2).(1)若點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,則a=_;b=_.(2)若點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,則a=_;b=_.3、如圖(4),OBC關(guān)于軸對(duì)稱,點(diǎn)A的坐標(biāo)為(1,-2),標(biāo)出點(diǎn)B的坐標(biāo)圖(5

16、)圖(4)3、如圖(5),利用關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)的特點(diǎn),分別作出與ABC關(guān)于軸和軸對(duì)稱的圖形13.3.1 等腰三角形(1)一、學(xué)習(xí)目標(biāo)1、了解等腰三角形的概念,掌握等腰三角形的性質(zhì);2、會(huì)運(yùn)用等腰三角形的概念及性質(zhì)解決相關(guān)問題。二、溫故知新1、下列圖形不一定是軸對(duì)稱圖形的是( ) A、圓 B、長(zhǎng)方形 C、線段D、三角形2、怎樣的三角形是軸對(duì)稱圖形?答: 3、有兩邊相等的三角形叫 ,相等的兩邊叫 ,另一邊叫 兩腰的夾角叫 ,腰和底邊的夾角叫 4、如圖,在ABC中,AB=AC,標(biāo)出各部分名稱三、自主探究 合作展示(一)操作、實(shí)踐:取一等腰三角形紙片,照?qǐng)D折疊,找出其中重合的線段和角,填入下表

17、:A A A B C B(C) B D C(1) (2) (3)重合的線段重合的角【問題1】根據(jù)上表你能得出哪些結(jié)論?并將你的結(jié)論與同學(xué)交流。【問題2】你能利用三角形全等的知識(shí)證明以上結(jié)論嗎?圖(1)圖(2)(二)【新知應(yīng)用】例1:填空:(1)如圖(1)所示,根據(jù)等腰三角形性質(zhì)定理在ABC中,AB=AC時(shí),ADBC,_ = _,_= _. AD是中線,_ ,_ =_. AD是角平分線,_ _ ,_ =_.(2)等腰三角形一個(gè)底角為70°,它的頂角為_.(3)等腰三角形一個(gè)角為70°,它的另外兩個(gè)角為 例2:如圖(2)所示,在ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=

18、AD,求ABC各角的度數(shù)分析:根據(jù)等邊對(duì)等角的性質(zhì),我們可以得到A=_,ABC=_=_,再由BDC=A+_,就可得到ABC=_=_=2_再由三角形內(nèi)角和為180°,就可求出ABC的三個(gè)內(nèi)角解:例題反思:四、雙基檢測(cè)1、在ABC中,AB=AC,(1)如果A70°,則C_,B_(2)如果A90°,則B_,C_(3)如果有一個(gè)角等于120°,則其余兩個(gè)角分別是多少度? (4)如果有一個(gè)角等于55°,則其余兩個(gè)角分別是多少度?圖(3)圖(4)2、如圖(3)所示,ABC是等腰直角三角形(AB=AC,BAC=90°),AD是底邊BC上的高,標(biāo)出B

19、、C、BAD、DAC的度數(shù),圖中有哪些相等線段?3、如圖(4),在ABC中,AB=AD=DC,BAD=26°,求B和C的度數(shù)13.3.1 等腰三角形(2)一、學(xué)習(xí)目標(biāo)1、理解等腰三角形的判定方法;2、會(huì)運(yùn)用等腰三角形的概念及性質(zhì)解決相關(guān)問題。二、溫故知新1、等腰三角形的兩邊長(zhǎng)分別為6,8,則周長(zhǎng)為 2、等腰三角形的一個(gè)角為70°,則另外兩個(gè)角的度數(shù)是 3、等腰三角形的一個(gè)角為120°則另外兩個(gè)角的度數(shù)是 三、自主探究 合作展示(一)【思考】(1)如圖(1),位于在海上A、B兩處的兩艘救生船接到O處遇險(xiǎn)船只的報(bào)警,當(dāng)時(shí)測(cè)得A=B如果這兩艘救生船以同樣的速度同時(shí)出發(fā),

20、能不能大約同時(shí)趕到出事地點(diǎn)(不考慮風(fēng)浪因素)?(2)我們把這個(gè)問題一般化,在一般的三角形中,如果有兩個(gè)角相等,那么它們所對(duì)的邊有什么關(guān)系?圖(1)已知:在ABO中,A=B 求證:AO=AO證明:【歸納】等腰三角形的判定方法:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的 也相等(簡(jiǎn)寫成 )(二)【新知應(yīng)用】圖(2)1、求證:如果三角形一個(gè)外角的平分線平行于三角形的一邊,那么這個(gè)三角形是等腰三角形 請(qǐng)同學(xué)們完成下列問題(1)、已知:如圖(2), 是ABC的外角,1= ,AD 求證: 分析:要證明AB=AC,可先證明B= ,因?yàn)?= ,所以可設(shè)法找出B、C與1、2的關(guān)系(2)、請(qǐng)同學(xué)們完整的寫出解

21、題過程證明: 例題反思:圖(3)2、如圖(3),標(biāo)桿AB的高為5米,為了將它固定,需要由它的中點(diǎn)C向地面上與點(diǎn)B距離相等的D、E兩點(diǎn)拉兩條繩子,使得D、B、E在一條直線上,量得DE=4米,繩子CD和CE要多長(zhǎng)?例題反思:四、雙基檢測(cè)圖(4)1、把一張等腰三角形的紙片沿與底邊平行的虛線裁剪后(如圖(4)所示),你得到的三角形還是等腰三角形嗎?為什么?圖(5)2、如圖(5),A=36°,DBC=36°,C=72°,分別計(jì)算1、2的度數(shù),并說明圖中有哪些等腰三角形圖(6)3、如圖(6),把一張矩形的紙沿對(duì)角線折疊重合部分是一個(gè)等腰三角形嗎?為什么?4、如圖(7),AC和

22、BD相交于點(diǎn)O,且ABDC,OA=OB,求證:OC=OD圖(7)13.3.2 等邊三角形(1)一、學(xué)習(xí)目標(biāo)1、了解等邊三角形是特殊的等腰三角形; 2、理解等邊三角形的性質(zhì)與判定。二、溫故知新1、在ABC中,AB=AC,(1)如果A70°,則C_,B_;(2)如果A90°,則B_,C_;(3)如果A60°,則B_,C_。2、在ABC中,如果AB=AC=BC,則A_,B_,C_。3、_的三角形是等邊三角形,等邊三角形是一種特殊的_三角形。 三、自主探究 合作展示【問題】1、把等腰三角形的性質(zhì)用于等邊三角形,能得到什么結(jié)論?2、一個(gè)三角形滿足什么條件就是等邊三角形?3、

23、你認(rèn)為有一個(gè)角等于60°的等腰三角形是等邊三角形嗎?如果是請(qǐng)說明理由?!拘轮獞?yīng)用】圖(1)例題:如圖(1),在ABC的邊AB、AC上分別截取AD=AEADE是等邊三角形嗎?試說明理由圖(2)變式:如圖(2),如將上述條件改為作ADE=60°,點(diǎn)D、E分別在邊AB、AC上,結(jié)論還成立嗎?改為過邊AB上點(diǎn)D作DEBC,交邊AC于點(diǎn)E呢?例題反思:探究(三)圖(3)等邊三角形三條中線相交于一點(diǎn)。請(qǐng)?jiān)趫D(3)中畫出圖形,找出圖中所有的全等三角形,并選擇其中一組全等三角形進(jìn)行證明。四、雙基檢測(cè)1、等邊三角形是軸對(duì)稱圖形嗎?它有幾條對(duì)稱軸?它們分別是什么?圖(4)2、如圖(4),等邊三

24、角形ABC中,AD是BC上的高,BDE=CDF=60°,圖中有哪些與BD相等的線段?3、已知:如圖(5),ABC是等邊三角形,BD是中線,延長(zhǎng)BC到E,使CE=CD圖(5)求證:DB=DE13.3.2 等邊三角形(2)一、學(xué)習(xí)目標(biāo)1、理解含30°銳角的直角三角形的性質(zhì); 2、能利用含30°銳角的直角三角形的性質(zhì)解決簡(jiǎn)單的實(shí)際問題。二、溫故知新(口答)1、等邊三角形三邊 ,三個(gè)角都等于 ,2、等邊三角形是軸對(duì)稱圖形,它有 條對(duì)稱軸,它的對(duì)稱軸 。三、自主探究 合作展示探究(一)BACD圖(1)1、如圖(1),將兩個(gè)含有30°角的三角形放在一起,你能借助這個(gè)

25、圖形,找到RtABC的直角邊BC與斜邊AB之間的數(shù)量關(guān)系嗎?2、你能用所學(xué)的知識(shí)驗(yàn)證以上結(jié)論嗎?方法1:如圖(2),ABC是等邊三角形,ADBC于D,BAD= °,BD= BC= AB。方法2:如圖(3),ABC中,延長(zhǎng)BC到D使BD=AB,連接AD,則ABD是 三角形,BADC圖(3)ACBD圖(2)BC= = 。探究(二)例題:如圖(4)是屋架設(shè)計(jì)圖的一部分,點(diǎn)D是斜梁AB的中點(diǎn),立柱BC、DE垂直于橫梁AC,AB=7.4m,A=30°,立柱BC、DE要多長(zhǎng)?圖(4) 分析:觀察圖形可以發(fā)現(xiàn)在RtAED與RtACB中,由于A=30°,所以DE= ,BC= ,又

26、由D是AB的中點(diǎn),所以DE= 例題反思:探究(三)A例題:如圖(5),要把一塊三角形的土地均勻分給甲、乙、丙三家農(nóng)戶去種植,如果C90°,A30°,要使這三家農(nóng)戶所得土地的大小和形狀都相同,請(qǐng)你試著分一分,在圖上畫出來.BCA圖(5)例題反思:四、雙基檢測(cè)1、等腰三角形中,一腰上的高與底邊的夾角為30°,則此三角形中腰與底邊的關(guān)系( )A、腰大于底邊 B、腰小于底邊C、腰等于底邊 D、不能確定2、在RtABC中,C=90度,A=30°,CDAB于點(diǎn)D,AB=8cm,則BC= ,BD= , AD= 3、如圖(6),在ABC 中C=90°,B=15

27、°,AB的垂直平分線交BC于D,交AB于M,且BD=8,求AC之長(zhǎng).圖(6)MCBDAMDBCA第13章 軸對(duì)稱復(fù)習(xí)(1)一、復(fù)習(xí)目標(biāo)1、認(rèn)識(shí)軸對(duì)稱、軸對(duì)稱圖形,理解并掌握軸對(duì)稱的有關(guān)性質(zhì);2、掌握簡(jiǎn)單圖形之間的軸對(duì)稱關(guān)系,能按照要求作出簡(jiǎn)單圖形經(jīng)過一次或兩次軸對(duì)稱后的圖形;3、了解線段的垂直平分線的概念,并掌握其性質(zhì);4、能利用軸對(duì)稱的性質(zhì)解決簡(jiǎn)單的實(shí)際問題。二、知識(shí)再現(xiàn)例1 、如圖(1), 判斷下列圖形是不是軸對(duì)稱圖形.圖(1) 例題反思:例2 、如圖(2),判斷每組圖形是否關(guān)于某條直線成軸對(duì)稱.圖(2)例題反思:例3、 如圖(3)所示,已知ABC和直線MN.求作:ABC,使AB

28、C和ABC關(guān)于直線MN對(duì)稱.(不要求寫作法,只保留作圖痕跡)圖(3)圖(4)例題反思:例4、 如圖(4)所示,有一塊三角形田地,AB=AC=10m,作AB的垂直平分線ED交AC于D,交AB于E,量得BDC的周長(zhǎng)為17m,請(qǐng)你替測(cè)量人員計(jì)算BC的長(zhǎng).例題反思:三、雙基檢測(cè)1、一只小狗正在平面鏡前欣賞自己的全身像,此時(shí),它所看到的全身像是( )2、如果O是線段AB的垂直平分線與AB的交點(diǎn),那么 = .圖(5)3、如圖(5)所示,AB=AC=12,BC=7,AB的垂直平分線交AB于D,交AC于E,求BCE的周長(zhǎng).4、某地有兩所大學(xué)和兩條相交叉的公路,如圖(6)所示(點(diǎn)M,N表示大學(xué),AO,BO表示公路).現(xiàn)計(jì)劃修建一座物資倉(cāng)庫(kù),希望倉(cāng)庫(kù)到兩所大學(xué)的距離相等,到兩條公路的距離也相等.(1)你能確定倉(cāng)庫(kù)應(yīng)該建在什么位置嗎?在所給的圖形中畫出你的設(shè)計(jì)方案;圖(6)(2)闡述你設(shè)計(jì)的理由.四、拓展提高如圖(7)所示的是一個(gè)在19×16的點(diǎn)陣圖上畫出的“中國(guó)結(jié)”,點(diǎn)陣的每行及每列之間的距離都是1,請(qǐng)你畫出“中國(guó)結(jié)”的對(duì)稱軸,并直接寫出陰影部分的面積圖(7)第13章 軸對(duì)稱復(fù)習(xí)(2)一、復(fù)習(xí)目標(biāo)1、了解等腰三角形的有關(guān)概念

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論