學(xué)年第二學(xué)期育才中學(xué)第一次月考_第1頁
學(xué)年第二學(xué)期育才中學(xué)第一次月考_第2頁
學(xué)年第二學(xué)期育才中學(xué)第一次月考_第3頁
學(xué)年第二學(xué)期育才中學(xué)第一次月考_第4頁
學(xué)年第二學(xué)期育才中學(xué)第一次月考_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、;.2012學(xué)年第二學(xué)期 中學(xué)第一次月考高二數(shù)學(xué)(理)試卷總分:150分 考試時間:100分鐘 命題人:一、選擇題(每小題5 分,共10小題,滿分50分)1、設(shè)函數(shù),當(dāng)自變量由改變到時,函數(shù)值的增量等于( )A BCD2、如果質(zhì)點A按規(guī)律運動,則在秒的瞬時速度為()A6 B18 C54 D813、 設(shè),若,則等于 ( )A2 B C3 D4、曲線在點處切線的傾斜角為()A1BCD5、已知函數(shù)的導(dǎo)函數(shù)的圖像如右圖,則( )A函數(shù)有1個極大值點,1個極小值點B函數(shù)有2個極大值點,2個極小值點C函數(shù)有3個極大值點,1個極小值點D函數(shù)有1個極大值點,3個極小值點6、 函數(shù)的單調(diào)增區(qū)間為 ( ) ABC

2、D7、函數(shù),的最大值是:( ) A. B. C. D.8、設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖象如圖1所示,則導(dǎo)函數(shù)可能為()xyO圖1xyOAxyOBxyOCyODx9、 若函數(shù)是定義在R上的可導(dǎo)函數(shù),則是為函數(shù)的極值點的( )A 充分不必要條件 B必要不充分條件C充要條件 D既不充分也不必在條件10、若函數(shù)在內(nèi)單調(diào)遞減,則實數(shù)的取值范圍是()ABCD二、填空題(共6小題,第小題5分,共30分)11、曲線在點切線方程為_。12、已知,若,則實數(shù)的值為_。13、若函數(shù)有兩個極值點,則實數(shù)的取值范圍 。14、函數(shù)在上為增函數(shù),則實數(shù)的取值范圍是_。15、已知,則= 。16、已知函數(shù)在時有極值0,則_。_。

3、2012學(xué)年第二學(xué)期育才中學(xué)第一次月考高二數(shù)學(xué)(理)答題卷一、選擇題(每小題5 分,共10小題,滿分50分)題 號12345678910答 案二、填空題(共6小題,第小題5分,共30分)11、 12、 13、 14、 15、 16、 三、解答題(共5小題,共70分)17、(滿分12分)求下列函數(shù)的導(dǎo)數(shù)。 (1) (2) (3) (4)18、(滿分14分)已知函數(shù)。 (1)求函數(shù)的單調(diào)區(qū)間; (2)若在區(qū)間上的最大值為20,求它在該區(qū)間上的最小值。 19、(滿分14分)一邊長為的正方形鐵片,鐵片的四角截去四個邊長均為的小正方形,然后做成一個無蓋方盒。 (1)試把方盒的容積表示為的函數(shù); (2)多

4、大時,方盒的容積最大? 20、(滿分15分)已知在處的極大值為4,極小值為0,試確定的值。21、(滿分15分)設(shè)函數(shù),()求的單調(diào)區(qū)間;()求所有實數(shù),使對恒成立 2012學(xué)年第二學(xué)期育才中學(xué)第一次月考高二數(shù)學(xué)(理)答案一、選擇題(每小題5 分,共10小題,滿分50分)題 號12345678910答 案 DCACACADBA二、填空題(共6小題,第小題5分,共30分)11、 12、 0或1 13、 14、 15、 16、 三、解答題(共5小題,共70分)17、(滿分12分)求下列函數(shù)的導(dǎo)數(shù)。 (1) (2) (3) (4) (1) 解: (2) 解:(3) 解:(4) 解:18、(滿分14分)已知函數(shù)。 (1)求函數(shù)的單調(diào)區(qū)間; (2)若在區(qū)間上的最大值為20,求它在該區(qū)間上的最小值。 解:(1) (2) 19、(滿分14分)一邊長為的正方形鐵片,鐵片的四角截去四個邊長均為的小正方形,然后做成一個無蓋方盒。 (1)試把方盒的容積表示為的函數(shù); (2)多大時,方盒的容積最大? 解:(1)由題意得: (2) 易知:為函數(shù)的極大值點, 當(dāng)時,方盒的容積最大20、(滿分15分)已知在處的極大值為4,極小值為0,試確定的值。 解: 由題意,應(yīng)有根故 (1)當(dāng)時: (2)當(dāng)時,同理可得21、(滿分15分)設(shè)函數(shù),()求的單調(diào)區(qū)間;()求所有實數(shù),使對恒

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論