




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、選修2-3第二章 隨機(jī)變量及其分布 綜合檢測(cè)時(shí)間120分鐘,滿分150分。一、選擇題(本大題共12個(gè)小題,每小題5分,共60分在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1已知隨機(jī)變量X滿足D(X)2,則D(3X2)()A2B8C18D20答案C解析D(3X2)9D(X)18.2離散型隨機(jī)變量X的概率分布列如下:X1234P0.20.30.4c則c等于()A0.1 B0.24 C0.01 D0.76答案A解析c1(0.20.30.4)0.1.3設(shè)服從二項(xiàng)分布XB(n,p)的隨機(jī)變量X的均值與方差分別是15和,則n、p的值分別是()A50, B60, C50, D60,答案B解析由得.4
2、某次語(yǔ)文考試中考生的分?jǐn)?shù)XN(90,100),則分?jǐn)?shù)在70110分的考生占總考生數(shù)的百分比是()A68.26% B95.44% C99.74% D31.74%答案B5若隨機(jī)變量X服從正態(tài)分布,其正態(tài)曲線上的最高點(diǎn)的坐標(biāo)是,則該隨機(jī)變量的方差等于()A10 B100 C. D.答案C解析由正態(tài)分布密度曲線上的最高點(diǎn)知,D(X)2.6(2010·山東文,6)在某項(xiàng)項(xiàng)體育比賽中,七位裁判為一選手打出的分?jǐn)?shù)如下:90899095939493去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均值和方差分別為()A92,2 B92,2.8 C93,2 D93,2.8答案B解析本題考查了方差及平均值的概念
3、,數(shù)據(jù)設(shè)置便于運(yùn)算屬基礎(chǔ)題,可各減去90,得0,0,3,4,3.2,平均數(shù)為92,方差2.8,選B.7甲、乙兩殲擊機(jī)的飛行員向同一架敵機(jī)射擊,設(shè)擊中的概率分別為0.4、0.5,則恰有一人擊中敵機(jī)的概率為()A0.9 B0.2 C0.7 D0.5答案D解析設(shè)事件A、B分別表示甲、乙飛行員擊中敵機(jī),則P(A)0.4,P(B)0.5,事件恰有一人擊中敵機(jī)的概率為P(AB)P(A)·(1P(B)(1P(A)·P(B)0.5.8盒中有10只螺絲釘,其中有3只是壞的,現(xiàn)從盒中隨機(jī)地抽取4個(gè),那么概率是的事件為()A恰有1只是壞的B4只全是好的C恰有2只是好的D至多有2只是壞的答案C解析
4、Xk表示取出的螺絲釘恰有k只為好的,則P(Xk)(k1、2、3、4)P(X1),P(X2),P(X3),P(X4),選C.9某計(jì)算機(jī)網(wǎng)絡(luò)有n個(gè)終端,每個(gè)終端在一天中使用的概率為p,則這個(gè)網(wǎng)絡(luò)在一天中平均使用的終端個(gè)數(shù)為()Anp(1p) BnpCn Dp(1p)答案B解析每天平均使用的終端個(gè)數(shù)XB(n,p),每天平均使用的終端個(gè)數(shù)值即E(X)np,故答案選B.10在高三某個(gè)班中,有的學(xué)生數(shù)學(xué)成績(jī)優(yōu)秀,若從班中隨機(jī)找出5名學(xué)生,那么,其中數(shù)學(xué)成績(jī)優(yōu)秀的學(xué)生數(shù)XB,則P(Xk)Ck·5k取最大值時(shí)k的值為()A0 B1 C2 D3答案B解析由解得k,又因?yàn)閗N*,所以k1.11若X是離散
5、型隨機(jī)變量,P(Xx1),P(Xx2),且x1x2.又已知E(X),D(X),則x1x2的值為()A. B. C3 D.答案C解析E(X)x1x2.x242x1,D(X)2×2×.x1x2,x1x23.12利用下列盈利表中的數(shù)據(jù)進(jìn)行決策,應(yīng)選擇的方案是()自然狀況A1A2A3A4S10.2550702098S20.3065265282S30.4526167810A.A1 BA2 CA3 DA4答案C解析A1的均值為50×0.2565×0.3026×0.4543.7.A2的均值為70×0.2526×0.3016×0.
6、4532.5.A3的均值為20×0.2552×0.3078×0.4545.7.A4的均值為98×0.2582×0.3010×0.4544.6.選方案A3.二、填空題(本大題共4個(gè)小題,每小題4分,共16分將正確答案填在題中橫線上)13將一顆骰子連擲100次,則點(diǎn)6出現(xiàn)次數(shù)X的均值E(X)_.答案解析這是100次獨(dú)立重復(fù)試驗(yàn),XB,E(X)100×.14一離散型隨機(jī)變量X的概率分布列為X0123P0.1ab0.1且E(X)1.5,則ab_.答案0解析 ab0.15(2009·上海·理7)某學(xué)校要從5名男生和
7、2名女生中選出2人作為上海世博會(huì)志愿者,若用隨機(jī)變量表示選出的志愿者中女生的人數(shù),則數(shù)學(xué)期望(均值)E()_(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)答案解析本題考查概率、互斥事件、數(shù)學(xué)期望,以及運(yùn)用知識(shí)解決問(wèn)題的能力由題意,的可能取值為0,1,2,則P(0),P(1),P(2).的分布列為012P的數(shù)學(xué)期望E()0×1×2×.16(2010·安徽理,15)甲罐中有5個(gè)紅球,2個(gè)白球和3個(gè)黑球,乙罐中有4個(gè)紅球,3個(gè)白球和3個(gè)黑球,先從甲罐中隨機(jī)取出一球放入乙罐,分別以A1,A2和A3表示由甲罐取出的球是紅球,白球和黑球的事件;再?gòu)囊夜拗须S機(jī)取出一球,以B表示由乙罐取出的球
8、是紅球的事件則下列結(jié)論中正確的是_(寫出所有正確結(jié)論的編號(hào))P(B);P(B|A1);事件B與事件A1相互獨(dú)立;A1,A2,A3是兩兩互斥的事件;P(B)的值不能確定,因?yàn)樗cA1,A2,A3中究竟哪一個(gè)發(fā)生有關(guān)答案解析由條件概率知正確顯然正確而且P(B)P(B(A1A2A3)P(BA1)P(BA2)P(BA3)P(A1)·P(B|A1)P(A2)P(B|A2)P(A3)P(B|A3)···.故不正確三、解答題(本大題共6個(gè)小題,共74分解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟)17(本題滿分12分)袋中有5個(gè)大小相同的小球,其中1個(gè)白球和4個(gè)黑球,每次從
9、中任取一球,每次取出的黑球不再放回去,直到取出白球?yàn)橹骨笕∏虼螖?shù)X的均值和方差解析取球次數(shù)X是一個(gè)隨機(jī)變量,X的所有可能值是1、2、3、4、5.為了求X的均值和方差,可先求X的分布列P(X1)0.2,P(X2)×0.2,P(X3)××0.2,P(X4)×××0.2,P(X5)××××0.2.于是,我們得到隨機(jī)變量X的分布列X12345P0.20.20.20.20.2由隨機(jī)變量的均值和方差的定義可求得:E(X)1×0.22×0.23×0.24×0.25
10、15;0.20.2×(12345)3,D(X)(13)2×0.2(23)2×0.2(33)2×0.2(43)2×0.2(53)2×0.20.2×(2212021222)2.點(diǎn)評(píng)把5個(gè)小球排成一排,在每一個(gè)位置上是白球的概率都是,P(Xk),k1、2、3、4、5.18(本題滿分12分)9粒種子種在甲,乙,丙3個(gè)坑內(nèi),每坑3粒,每粒種子發(fā)芽的概率為0.5.若一個(gè)坑內(nèi)至少有1粒種子發(fā)芽,則這個(gè)坑不需要補(bǔ)種;若一個(gè)坑內(nèi)的種子都沒有發(fā)芽,則這個(gè)坑需要補(bǔ)種(1)求甲坑不需要補(bǔ)種的概率;(2)求3個(gè)坑中恰有1個(gè)坑不需要補(bǔ)種的概率;(3)求
11、有坑需要補(bǔ)種的概率(精確到0.001)解析(1)因?yàn)榧卓觾?nèi)3粒種子都不發(fā)芽的概率為(10.5)3,所以甲坑不需要補(bǔ)種的概率為10.875.(2)3個(gè)坑恰有一個(gè)坑不需要補(bǔ)種的概率為C××20.041.(3)因?yàn)?個(gè)坑都不需要補(bǔ)種的概率為3,所以有坑需要補(bǔ)種的概率為130.330.19(本題滿分12分)某陶瓷廠準(zhǔn)備燒制甲、乙、丙三件不同的工藝品,制作過(guò)程必須先后經(jīng)過(guò)兩次燒制,當(dāng)?shù)谝淮螣坪细窈蠓娇蛇M(jìn)進(jìn)入第二次燒制,兩次燒制過(guò)程相互獨(dú)立根據(jù)該廠現(xiàn)有技術(shù)水平,經(jīng)過(guò)第一次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.5、0.6、0.4,經(jīng)過(guò)第二次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依
12、次為0.6、0.5、0.75,.求第一次燒制后恰有一件產(chǎn)品合格的概率;.經(jīng)過(guò)前后兩次燒制后,合格工藝品的個(gè)數(shù)為X,求隨機(jī)變量X的均值解析分別記甲、乙、丙經(jīng)第一次燒制后合格為事件A1、A2、A3.設(shè)E表示第一次燒制后恰好有一件合格,則P(E)P(A1··)P(·A2·)P(··A3)0.5×0.4×0.60.5×0.6×0.60.5×0.4×0.40.38.解法一:因?yàn)槊考に嚻方?jīng)過(guò)兩次燒制后合格的概率均為p0.3,所以XB(3,0.3),故E(X)np3×0.30.
13、9.解法二:分別記甲、乙、丙經(jīng)過(guò)兩次燒制后合格為事件A、B、C,則P(A)P(B)P(C)0.3,所以P(X0)(10.3)30.343,P(X1)3×(10.3)2×0.30.441,P(X2)3×0.32×0.70.189,P(X3)0.330.027.于是,E(X)1×0.4412×0.893×0.0270.9.20(本題滿分12分)(2010·浙江杭州高二檢測(cè))甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到A,B,C,D四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者(1)求甲、乙兩人同時(shí)參加A崗位服務(wù)的概率;(2)求甲、
14、乙兩人不在同一個(gè)崗位服務(wù)的概率;(3)設(shè)隨機(jī)變量X為這五名志愿者中參加A崗位服務(wù)的人數(shù),求X的分布列解析(1)記甲、乙兩人同時(shí)參加A崗位服務(wù)為事件EA,那么P(EA).即甲、乙兩人同時(shí)參加A崗位服務(wù)的概率是.(2)記甲、乙兩人同時(shí)參加同一崗位服務(wù)為事件E,那么P(E).所以,甲、乙兩人不在同一崗位服務(wù)的概率是P()1P(E).(3)隨機(jī)變量X可能取的值為1,2,事件“X2”是指有兩人同時(shí)參加A崗位服務(wù),則P(X2).所以P(X1)1P(X2),X的分布列為:X12P21.(本題滿分12分)壇子里放著5個(gè)相同大小,相同形狀的咸鴨蛋,其中有3個(gè)是綠皮的,2個(gè)是白皮的如果不放回地依次拿出2個(gè)鴨蛋,求
15、:(1)第一次拿出綠皮鴨蛋的概率;(2)第1次和第2次都拿到綠皮鴨蛋的概率;(3)在第1次拿出綠皮鴨蛋的條件下,第2次拿出綠皮鴨蛋的概率解析設(shè)第1次拿出綠皮鴨蛋為事件A,第2次拿出綠皮鴨蛋為事件B,則第1次和第2次都拿出綠皮鴨蛋為事件AB.(1)從5個(gè)鴨蛋中不放回地依次拿出2個(gè)的基本事件數(shù)為()A20.又(A)A×A12.于是P(A).(2)因?yàn)?AB)A6,所以P(AB).(3)解法一:由(1)(2)可得,在第1次拿出綠皮鴨蛋的條件下,第2次拿出綠皮鴨蛋的概率為P(B|A).解法二:因?yàn)?AB)6,(A)12,所以P(B|A).22(本題滿分14分)(2010·山東理,2
16、0)某學(xué)校舉行知識(shí)競(jìng)賽,第一輪選拔共設(shè)有A、B、C、D四個(gè)問(wèn)題,規(guī)則如下:每位參加者計(jì)分器的初始分均為10分,答對(duì)問(wèn)題A、B、C、D分別加1分、2分、3分、6分,答錯(cuò)任一題減2分;每回答一題,計(jì)分器顯示累計(jì)分?jǐn)?shù),當(dāng)累計(jì)分?jǐn)?shù)小于8分時(shí),答題結(jié)束,淘汰出局;當(dāng)累計(jì)分?jǐn)?shù)大于或等于14分時(shí),答題結(jié)束,進(jìn)入下一輪;當(dāng)答完四題,累計(jì)分?jǐn)?shù)仍不足14分時(shí),答題結(jié)束,淘汰出局;每位參加者按問(wèn)題A、B、C、D順序作答,直至答題結(jié)束假設(shè)甲同學(xué)對(duì)問(wèn)題A、B、C、D回答正確的概率依次為,且各題回答正確與否相互之間沒有影響(1)求甲同學(xué)能進(jìn)入下一輪的概率;(2)用表示甲同學(xué)本輪答題結(jié)束時(shí)答題的個(gè)數(shù),求的分布列和數(shù)學(xué)期望E.分析本題考查了相互獨(dú)立事件同時(shí)發(fā)生的概率、考查了離散型隨機(jī)變量的分布列以及數(shù)學(xué)期望的知識(shí),考查了同
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 班級(jí)歷史文化傳承的舉措計(jì)劃
- 大班班級(jí)日常管理的注意事項(xiàng)計(jì)劃
- 2025年玉米酒精糟回收蛋白飼料成套設(shè)備(DDGS)項(xiàng)目建議書
- 2025年異步轉(zhuǎn)移模式寬帶交換機(jī)項(xiàng)目建議書
- 2025年不停電電源(UPS)項(xiàng)目合作計(jì)劃書
- 2025年中國(guó)文創(chuàng)產(chǎn)品行業(yè)發(fā)展策略、市場(chǎng)環(huán)境及前景研究分析報(bào)告
- 2025年鼠抗腫瘤相關(guān)抗原單克隆抗體項(xiàng)目合作計(jì)劃書
- 客戶資料查詢權(quán)限嚴(yán)格把控
- 簡(jiǎn)易私人承包合同
- 電纜電線采購(gòu)合同書
- 信息系統(tǒng)運(yùn)行管理員(基礎(chǔ)知識(shí)、應(yīng)用技術(shù))合卷軟件資格考試(初級(jí))試題與參考答案(2024年)
- 延安研學(xué)活動(dòng)方案
- 2024年高考政治必修三《政治與法治》??疾牧项}考點(diǎn)梳理匯編
- 體檢報(bào)告電子版
- 2024年中考語(yǔ)文真題分類匯編(全國(guó)版)專題12議論文閱讀(第01期)含答案及解析
- 食堂清洗及消毒制度
- 服裝質(zhì)量管理制度
- 稀土材料技術(shù)基礎(chǔ)知識(shí)單選題100道及答案解析
- 自然辯證法概論:第四章-馬克思主義科學(xué)技術(shù)社會(huì)論
- 建筑工程質(zhì)量管理培訓(xùn)
- GB/T 17395-2024鋼管尺寸、外形、重量及允許偏差
評(píng)論
0/150
提交評(píng)論